
Technical: Developer Documentation: Technical Notes

CONTENTS

Binaries should be Mach-O
Run performance tools on your binary
Don't use processor resources unless you have to
Use Carbon Events in your Application
Avoid using resource forks
Use file extensions
Make your code volume-format independent
Use bundled resources and Unicode-savvy APIs
Investigate using path-based file-system APIs
Cocoa: The quickest way to developing the next killer application
for Mac OS X
Be judicious using C++ for new development
References
Downloadables

Mac OS X is designed to be a powerful,
robust, and versatile operating system. For it
to live up to its full potential, however, requires
adherence to some specific programming
practices.

[Nov 26 2001]

Please keep the following points in mind when developing for Mac OS X:

Binaries should be Mach-O
Mach-O is the native executable format of Mac OS X. This has several implications for code that is compiled into that
format, and for code that isn't. Mach-O code gets the most efficient access to all Mac OS X technologies and the best possible
integration with system software. Code that isn't Mach-O doesn't.

Mach-O is supported by Apple's development tools, CodeWarrior Pro 7 and Absoft Pro Fortran for Mac OS X at the present
time. Others are working on it as well.

As a developer you have several options for moving to Mach-O:

1. Use Apple Development tools:

Apple delivers a complete suite of development tools for Mac OS X: Mach-O code generation with C, C++ and
Objective-C languages, complete Carbon, Cocoa and I/O Kit support, full Java development support, Aqua
interface design tools, along with debugging and performance analysis tools. The development tools suite centers
around the Project Builder IDE and Interface Builder UE design applications.

They are free and support all the benefits of Mac OS X like application packaging, Mach-O binary, multiple
localizations, Cocoa, Carbon.

Interface Builder and Project Builder are available to all our developers on Apple developer's web site.

2. Use Metrowerks CodeWarrior 7:

11/28/01 7:56 PMMac OS X Programming Guidelines

Page 1 of 5http://developer.apple.com/technotes/tn/tn2034.html

CodeWarrior for Mac OS, version 7 fully supports Mach-O development using Carbon or the BSD APIs in Mac OS
X. CodeWarrior for Mac 7 includes a Mach-O C/C++ compiler, linker, and debugger.

All CodeWarrior libraries, including MSL C++ and the PowerPlant C++ application framework, have been
updated to build for Mach-O.

CodeWarrior for Mac 7 includes a project conversion utility that will easily allow developers to convert their
existing PEF-based Carbon applications to build as Mach-O Carbon applications.

You now have all the tools to move to Mach-O.

If you have a Carbon application that you want to run on both Mac OS X and Mac OS 9, you should package your
application as a bundle that contains a CFM binary optimized for Mac OS 9 and a Mach-O binary optimized for
Mac OS X.

Note:

Information about binary formats and bundle packaging is available in .Inside Mac OS X: System Overview

Back to top

Run performance tools on your binary
Once a project is functionally complete, it still requires several iterations to improve performance. For this task, you have
a suite of tools at your disposal, including , , , , , and . Use these
tools to monitor activity during all phases of operation (launch, opening files, and so on). When an application is properly
tuned, these tools should detect the minimal activity possible during each phase.

top MallocDebug fs_usage sample leaks Sampler

While the Carbon API preserves most application semantics, that does not imply that the same application on
Mac OS X and Mac OS 9 will have the same performance characteristics. Certain activities are faster on Mac OS
X and others are faster on Mac OS 9. A Carbon application that has been optimized for Mac OS 9 should be
completely retuned for Mac OS X because the performance tradeoffs are different.

Note:

You'll find documentation on how to use performance tools Apple ships with Mac OS X at the following URL: http://
developer.apple.com/techpubs/macosx/Essentials/Performance/Performance.pdf

Back to top

Don't use processor resources unless you have to
Remember that your code is executing on a fully preemptive, multitasking operating system. Thus every cycle that your
code uses is not available for something else. Polling and spin loops on Mac OS 9 might have few ill effects, but on Mac OS X
they have many. When the user is doing nothing with your application, make sure your application itself is doing nothing.
That means it should be using zero - yes, zero - CPU cycles.

Carbon events can help you achieve this.

Back to top

Use Carbon Events in your Application
You'll find documentation on Carbon events here: http://developer.apple.com/techpubs/macosx/Carbon/oss/
CarbonEventManager/carboneventmanager.html

11/28/01 7:56 PMMac OS X Programming Guidelines

Page 2 of 5http://developer.apple.com/technotes/tn/tn2034.html

Back to top

Avoid using resource forks
Mac OS X is intended to be an excellent Web citizen, a player in a networked world where often only "flat files" are
recognized. It must provide access to file systems and network protocols such as WebDAV, NFS, and SMB.

Toward this end, the resource forks of HFS and HFS+ files should not contain resources or any other critical data. Carbon
applications should put their resource data in the data fork of separate files (such as .rsrc files). This strategy also makes
applications easier to internationalize.

Back to top

Use file extensions
If your application creates documents, those documents should be saved under the filename extensions claimed by the
application in its Info.plist. Your application may use type and creator codes as an additional means of document typing, but
extensions are essential because they are more durable. As with resource-fork data, type and creator codes (which are
stored in the Finder Info fork) can be stripped off as a file travels between different file systems. Unless a user
deliberately removes them, file extensions are left intact. More information here: http://developer.apple.com/techpubs/
macosx/ReleaseNotes/FileExtensionGuidelines.html

Back to top

Make your code volume-format independent
Carbon pays attention to the underlying volume format and shields your application from volume format specific issues.
This means that your Mac OS X application will live harmoniously in heterogeneous environments. But in turn, your
application needs to be a good citizen and avoid writing out meta file information, because meta information is only natively
supported on HFS and HFS+ file systems. Meta information therefore incurs a performance overhead on non-HFS(+) file
systems. If your Carbon application uses the older FSSpec API's, convert to the new FSRef API's so your application works
well with our volume formats.

Back to top

Use bundled resources and Unicode-savvy APIs
The success of Mac OS X depends not only on its reception in the United States but also in other countries throughout the
world. For Mac OS X to be a truly internationalized operating system, applications and framework bundles should
appropriately package resources and their localizations. Additionally, they should use the appropriate APIs for handling and
converting Unicode text, and for providing multiscript support.

Carbon developers can find extensive documentation on Mac OS X text technologies here:
(information on ATSUI, MLTE and Quartz text rendering as well as localization)

http://developer.apple.com/intl/

Back to top

Investigate using path-based file-system APIs
Paths provide the native access to files on a volume-format independent operating system like Mac OS X. All other
mechanisms, such as s and s, are built on top of paths and therefore incur some performance cost. This cost
can be considerable when converting back and forth in between paths (or s) and s (or s). When

FSRef FSSpec
CFRURL FSRef FSSpec

11/28/01 7:56 PMMac OS X Programming Guidelines

Page 3 of 5http://developer.apple.com/technotes/tn/tn2034.html

developing for Mac OS X, consider using POSIX paths and s to represent your files, especially s.
performs all translations between different file-system representations, can handle path components that are fully
internationalized and of arbitrary length. Additionally, you can pass s around without incurring any I/O cost until
the moment disk access occurs. Even if there is a good reason to use an for
some specific fi le, consider using for general file access and only using an where there's a good user
experience justification for doing so.

CFURL CFURL CFURL

CFURL
FSRef

CFURL FSRef

Back to top

Cocoa: The quickest way to developing the next killer application
for Mac OS X
Based on OpenStep, Cocoa is a mature object-oriented technology that gives you basic application functionality for free,
automatically supporting all Mac OS X application services. Rather than spending time "reinventing the wheel," leverage
Foundation and AppKit's frameworks and devote your development to working on the extended functionality that sets your
application apart from the rest.

Training classes and excellent documentation are available to help get you started with Cocoa.

Documentation for Cocoa developers can be found at In addition, we are
working on a new tutorial for Cocoa development so please check our web site regularly.

http://developer.apple.com/techpubs/macosx

Documentation on using Interface Builder (a great tool to prototype or make your UI for Carbon And Cocoa) can be found
here: http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html

Back to top

Be judicious using C++ for new development
Although C++ provides several attractive features, especially for application developers, experience has shown it also
presents a couple of risks to be guarded against.

The statically-bound nature of C++ class libraries is generally incompatible with the dynamic code loading and software
updated feature of Mac OS X. If there is any chance that your favorite collection of useful functions will ever need to be
packaged into a shared library, do not use C++. Good old 'C' is the preferred language for performance-critical shared
libraries. Where it's necessary to export object-oriented interfaces, both Java and Objective-C provide dynamic class
loading mechanisms that work well with Mac OS X.

"Object-oriented Programming and the Objective-C Language", a book on Objective-C, can be found at
. Java documentation is available from many different sources.

http://
developer.apple.com/techpubs/macosx

In addition to the shared library consideration, the C++ language itself presents a number of challenges to creating
portable code. C++ specifies a number of language features that are not universally supported across different compilers.
Exploiting all the features of C++ in your code can make porting your software to new platforms and new compilers
difficult. Where you must use C++, be careful to restrict your use of the language to the absolute basics.

In addition to the specific sources of information mentioned above, there are other places to get help.

The Mac OS X System Overview provides details about many of the topics listed above, and is being updated to provide even
more.

The Carbon Porting Guide and the Core Foundation documentation have valuable information for Carbon developers.

All of these documents can be found on the public Apple Developer Connection web site, at
.

http://developer.apple.com/
techpubs

Back to top

References

11/28/01 7:56 PMMac OS X Programming Guidelines

Page 4 of 5http://developer.apple.com/technotes/tn/tn2034.html

Developer technotes with focused responses to specific developer issues

Developer Q&A's

Back to top

Downloadables

Acrobat gifAcrobat version of this Note (36K) Download

Back to top

Technical Notes by | | |
 | | |

Date Number Technology Title
Developer Documentation Technical Q&As Development Kits Sample Code

Ê|Ê Ê|ÊContact ADC ADC Site Map ADC Advanced Search

For information about Apple Products, please visit .Apple.com

Ê|Ê
Copyright © 2001 Apple Computer, Inc.

1-800-MY-APPLE

Contact Apple Privacy Notice
All rights reserved.

11/28/01 7:56 PMMac OS X Programming Guidelines

Page 5 of 5http://developer.apple.com/technotes/tn/tn2034.html

