
Human Interface Guidelines

Second Beta Draft

date: 22 July 1986

writer: John Huber
Apple Technical Publications, Mailstop 22-K

Here is your copy of the second beta draft of Human. Inteiface Guidelines, which will be
laserset and distributed through APDA (Apple Programmers and Developers Association).

This is really your last chance to make substantial changes or suggestions. I know, I told
you that before-but the book has been enlarged and reorganized since then. After the final
draft is circulated, only the most essential changes will be considered. If you don't have
time to review the entire document, at least look at the parts dealing with your own area of
interest or expertise.

Review Meeting

A review meeting will be held in the Dallas Conference Room, foUrth floor of the
Four-Phase Building from 3 to 5 pm on ~!18. Mark your calendar now, then either
bring this draft (with your written comments~to the meeting-or send it to me at
mailstop 22-K. \

AV.qtLSf
Thanks! J

I,

Apple Human Interface Guidelines

[second] beta Draft
Part No. 030-nnnn

22 July 1986

Writer: John Huber
Apple Technical Publications

[The text on this page was supplied by Apple's Legal Department for the reverse of the title
page.]

© Apple Computer, Inc. 1986
All rights reserved.

Notice: The Apple Human Interlace is proprietary to Apple Computer and is protected by
both literary and audio-visual copyrights and patents. Unauthorized use or copying of the
interlace is not permitted and is a violation of Apple's intellectual property rights.

Apple Human Interface Guidelines

Table of Contents

ii Foreword

1 Chapter 1: Design Philosophy
1 The Roots of Apple's Desktop Interface
2 The Spirit of the Interface
2 WYSI\VYG
2 Human Control
2 Dialog
3 Ease of Learning
3 Consistency
4 Perceived Stability
4 See-and-Point versus Remember-and-Type
5 Immediate Feedback
5 Forgiveness
6 A View of the User
6 Human Tasks
6 Active Users
7 Symbolic Representations
7 Recognition versus Recall
7 Learning
8 Metaphors from Non-Computer Worlds
8 A Model for Programming
8 Event Loops
9 Modelessness

10 Keeping the User Informed
10 Visual Integrity
10 User Initiation
10 Reversible Actions
11 Plain Language
11 The Screen
11 Graphic Communication
11 Visual Consistency
12 Simplicity
12 Clarity
13 Some Graphic Rules of Thumb
14 Keeping the Promise to Disabled People
14 Vision Disabilities
14 Physical Disabilities
14 Hearing Disabilities
15 Other Disabilities
15 Manuals

1

Human Inteiface Guidelines

16 Chapter 2: Human Interaction: Pointing, Selecting, and Editing
17 The Pointing Device
18 What About the Cursor? (a Digression)
18 Mouse Actions
19 Double Clicking
20 Insertion Points and Pointers
21 The Keyboard
21 Character Keys
22 Modifier Keys
23 Typeahead and Auto-Repeat
23 International Keyboards
23 Arrow Keys
24 Appropriate Uses for Arrow Keys
24 Moving the Insertion Point
25 Modifier Keys With Arrow Keys
26 Making a Selection With Arrow Keys
27 Extending or Shrinking a Selection
27 Undoing a Selection
27 Selecting
28 Types of Objects
31 Selection in General
31 Selection by Clicking
31 Range Selection
31 Extending a Selection
31 Making a Discontinuous Selection
33 Selection by Data Type
33 Selections in Text
35 Selections in Graphics
35 Selections in Arrays and Tables
38 Editing Text
38 Inserting Text
39 Backspacing
39 Replacing Text
39 Intelligent Cut and Paste
40 Editing Fields

42 Chapter 3: Screen Elements
42 The Desktop
43 Menus
45 The Menu Bar
46 Choosing a Menu Command
46 Appearance of Menu Commands
46 Grouping Commands in Menus
47 Special Visual Features
49 Reserved Apple Key Combinations

22 July 1986 ii

(

50
51
52
53
53
54
55
56
56
56
57
57
57
58
59
60
60
60
61
61
61
61
61
62
63
63
64
66
66
66
67
68
69
69
69
72
73
73
73
74
74
76
77
77
78
78
78
78
80

Standard Menus
The Apple Menu
The File Menu

New
Open
Close
Save
Save As
Revert to Saved
Page Setup
Print
Quit

The Edit Menu
The Clipboard
Undo
Cut
Copy
Paste
Clear
Select All
Show Clipboard

Font-Related Menus
Font Menu
FontSize Menu
Style Menu

Icons
Palettes
Windows

Document Windows
Opening and Closing Windows
Multiple Windows
The Active Window
Moving a Window
Changing the Size of a Window
Window Zooming

Scroll Bars
Scrolling with the Scroll Arrows
Scrolling by Windowful
Scrolling by Dragging the Scroll Box

Automatic Scrolling
Splitting a Window
Panels
Controls, Dialogs, and Alerts

Controls
Buttons
Check Boxes and Radio Buttons
Dials

Dialogs
Alerts

iii

Human Interface Guidelines

22 July 1986

Human Interface Guidelines

83 Appendix A: Localization Guidelines
83 General Guidelines
84 Macintosh Localization
84 Text
84 Line Spacing
84 Font Selection
84 Upper- and Lowercase
85 Menus
85 Menu Bar Height
85 Menu Items
85 Menu Titles
85 The International Utilities Package
85 The Script Interface System Package
85 Dialogs and Alerts
85 Some Useful Routines

87 Appendix B: Bibliography

22 July 1986 iv

(

Foreword

This book provides guidelines for creating pleasing, useful, consistent, easy-ta-learn
software for any computer in the Apple® proouct line, and provides the rationale behind
the Apple desktop interface. Various Apple hardware systems can accommooate this
interface in varying degrees. Because of the abundance of tools in its ROM, the
MacintoshTM system is the one in which this interface is most fully implemented.

There are two major advantages to using ROM-based tools and resources: compatibility
and efficiency. The more a program bypasses or replaces these tools or resources, the more
likely that sooner or later it will become incompatible with new products or new features.
Though you may know a more direct way of getting the information, or a faster way of
doing the operation, it's best to use the system-provided features that will ensure hardware
independence. You should, for example, access the variable that gives you the current size
of the screen rather than hard-coding screen constants into the program. You can also write
your program so that it can access, through device drivers, any peripheral device that
happens to be installed on the computer being used-even peripherals that aren't yet
developed. And don't write new cooe if you don't have to-find out what wheels have
already been invented for your computer, and use them!

A human interface is not merely a visual display-in fact, it is possible to have a human
interface with no visual display at all. A human interface is the sum of all communication
between the computer system and the user. It is the part of the system that presents
information to the user and accepts information from the user. It is the way in which the
user accesses the functionality of the computer.

The human interface comprises features that are generally applicable to a variety of
applications, but not all of the features are found in every application. In fact, some
features are hypothetical because they anticipate future needs, and may not be found in any
current applications.

You'll get the most from this book if you already have some experience with a
desktop-based Finder program and with some application programs that use windows,
pull-down menus, and a mouse-preferably one each of a word processor, a spreadsheet
or data base, and a graphics application. You should also be familiar with the concepts of
pointing, clicking, and dragging with the mouse.

Although you can fmd examples of most of the features described in this book by looking
at existing applications, no one program has fully implemented these guidelines, and
perhaps none ever will. Taken together, MacWrite, MacPaint, and MacDraw come close to
containing the full set of features as implemented on the Macintosh computer. While there
are some very good programs that deviate in some degree from these guidelines, emulate
~hem only with good reason. The interface, and therefore these guidelines, will continue to
evolve as Apple, and you, learn more about how people use computers.

You'll fmd detailed implementation specifications in the technical documentation for the
particular Apple computer for which you're developing software. You can also contact
Apple Developer Relations about becoming a registered developer.

Human Interface Guidelines

Remember that there are programming environments (as opposed to application programs)
that use human interface techniques that may be inappropriate paradigms for application
programs.

The best time to familiarize yourself with the human interface is before beginning to design
an application. Good application design happens when a software developer has absorbed
the spirit as well as the details of the human interface.

-4ii-.
VI

CONFIDENTIJ - 'l? July 1986

(

(

Chapter 1

Design Philosophy

The Roots of Apple's Desktop Interface
The fIrst Apple desktop interface, introduced in 1983, drew on work done elsewhere. At
SRI International in the 1960s, the Augmentation Research Project introduced the idea of
integrated media that would augment human intelligence. This project also introduced
"intelligent cut and paste." The mouse, too, was developed at SRI.

The concept of overlapping windows that can be moved around on a screen, much as
papers on a desktop, was developed at Xerox as part of the Smalltalk interactive
environment. The graphical menu, one that is always on the screen, originated with CAD
systems. Smalltalk features a mouse; two of its three buttons are used to call menus that
"pop up" under the pointer, varying according to which button is pressed and where the
pointer is on the screen.

The desktop metaphor, with icons to represent objects, was developed around 1974 at
Xerox and evolved into the Star workstation that was introduced in 1981. The Star's

."plain paper" metaphor means that, for example, that the user can edit a graphic that has
been pasted in a text document without leaving the text editor (the tool that created the
graphic is always available). Star's impact on software development has been dramatic.

Though the plain paper metaphor was thought too complex at that time, other Smalltalk
features influenced Apple's Lisa project. Scroll bars and consistent text editing were
adapted to the Lisa. Lisa's Filer was originally a remember-and-type interface that gave
the user the feeling of asking an agent (the Filer) to carry out a task. But after seeing the
introduction of the Star, the Lisa team redesigned the Filer, making the desktop metaphor
and icons a high priority and taking advantage of Lisa's bit-mapped graphics to provide the
directness and visualness they wanted.

Several now-common interface features appeared ftrst on the Lisa: the menu bar (because
most people read left-to-right and top-to-bottom), the one-button mouse (users never
have to think about which button to press), dialog boxes, the Clipboard, and the Trashcan.
Until Lisa, users couldn't drag icons or make them zoom into overlapping windows.

Here are the key design concepts of the Lisa, introduced in 1983:
• bit-mapped display and windows
• mouse as pointing device
• consistent human interface (and its byproduct, and ease of learning)
• the office desktop metaphor
• multitasking

Except for multitasking, all of these features were incorporated in the smaller and less
expensive Apple Macintosh, introduced in 1984. The Macintosh's popularity and obvious
ease of use caused many loyal Apple II users to want a desktop interface for that family of

Human Inteiface Guidelines

computers. Now, several programs are available that give Apple IT users the benefits of the
mouse, windows, pull-down menus, and icons.

Tl).e Spirit of the Interface
This section outlines the principles behind the Apple human interface-the spirit of the
interface. These principles are not limited to the present "desktop" interface-they are more
general than that and will still be valid when new interface metaphors are found. For
example, computers will always provide views of information, but not necessarily by
means of "windows." .

WYSIWYG

A fundamental principle of the Apple Desktop Interface is that the user sees on the screen exactly
what he will later get on paper. On the Macintosh, this principle is taken to the extent that the size
of an object on the screen is exactly the size it'll be when printed on paper. People who use
applications such as MacWrite or MacPaint take for granted the idea of WYSIWYG (What You See
Is What You Get). Applications violate this principle when, for example, they display editing
marks that are supposed to represent how a text sequence or image will appear on paper.

Users should not have to make any mental transformation between their computer work and the
end products of that work. The computer itself can handle these transformations. In this sense,
the computer really becomes a thinking tool as well as a simple production tool.

Human Control

People want to feel in control. They want to make the decisions, not leave them to the
computer or the software designer. Rather than having to remember all available options,
they want to be able to select from alternatives presented to them on the screen. As they
gain confidence, they expect to be able to get their work done with a minimum of fuss.
Pull-down menus, dialog boxes, and desk accessories (such as Control Panel and
Chooser) put the user in control of the computer.

People also appreciate being able (but not being required) to control the superficial aspects
of their work environment-such as the arrangement and size of objects on the screen.
That's why the Macintosh Finder lets users view their documents in different ways (by
icon, by date, by size) and why the Control Panel offers control over sound volume,
desktop background pattern, and so on. Messy screens and disorganized folders are
acceptable if the user creates the mess! Applications should never override preferences the
user has set with the Control Panel-if the user has set sound volume to zero, the computer
should be silent.

Dialog

Good human interface involves a friendly dialog between the person and the computer. If
dialog is not clear, the user becomes confused and frustrated. One measure of the success
of an interface is the user's ability quickly to leam it and to be efficient and productive with
it.

CONFIDENTIAL: 22 July 1986 2

(

(

Human Inteiface Guidelines

In person-to-person tenns: you send me a message; I receive and decode it and offer a
reply. When a message is not clear, one of us requests clarification. A computer
equivalent might be: the user selects a program icon and then chooses Open from the File
menu. The computer interprets that message as "open the XXX application"-and does it.
Or the user selects a disk icon and chooses Erase from the Special menu. With a dialog
box, the computer asks for clarification of risky operations- for example, "Are you sure
you want to erase 1985 Tax Info?"

Ease of Learning

Tools are easy to learn when they start with what the user already knows. Concrete
metaphors, when made plain, let users apply their non-computing experience to a new
environment. Most people today are used to desks, calculators, file folders, and paper.
They write messages on paper, move papers around on desktops, store collections of
related papers in file folders, and toss unwanted papers into trash baskets. They keep
drawing tools and calculator close at hand. The Apple desktop interface is based on these
familiar things. The way users directly manipulate data in the computer resembles the way
they manipulate physical things on a physical desktop.

The goal is to let the user accomplish what needs to be done spontaneously and intuitively,
rather than making him or her think: "Let's see; to do C, first I have to do A and Band
then..." With pull-down menus, for example, the user can choose a desired operation
directly and quickly, with a greatly reduced error rate.

As a general rule, the more often a thing is done, the easier it should be to do. Only things
that are rarely done (or are hazardous to the user's data or sanity) should even approach
being difficult to do.

When computers are easy to learn and use, people make fewer mistakes and enjoy what
they're doing!

Consistency

Two kinds of consistency are important to the human interface. Programs should be both
consistent within themselves and with one another. One of the primary purposes of the
Apple human interface is to support consistency between applications.

People usually divide their time among several applications; they get confused and irritated
when they have to learn a completely new interface for each application. As a developer,
you will not only save your customers from this confusion and irritation when you make
your program consistent with others-you also save yourself time and resources by taking
advantage of work already done.

Consistency is easier to achieve on computers that supply, in toolboxes, many of the
routines used to implement the human interface. Though you probably want to avoid
writing routines that have already been made available, you should be aware that
implementing the full human interface may require writing additional code that isn't
supplied. .

In the quest for consistency, don't feel that you're limited to existing features. New ideas
are essential to keep the interface growing. For example, a journaling or macro capability

3 CONFIDENTIAL: 22 July 1986

Human Inteiface Guidelines

is an inevitable extension of the interface. But the bread-and-butter features, the kind that
every application has, should certainly work the same way in all programs so that the user
can easily move back and forth between applications. If your application has a feature
that's described in these guidelines, you should implement the feature exactly as the
guidelines descriQe it-but if you want to try something different, remember that a feature
is probably less confusing to users ifit's completely different than if it halfcomplies with
the guidelines. .

Perceived Stability

Computers easily adapt to the kind of rapid change that can disorient people. To give people a
sense of stability, the Apple Desktop Interface provides a two-dimensional space on which objects
are placed. The placement of these objects is constant unless the user moves them. The menu bar
is always at the top of the screen, providing a stable element which frames changing displays.
Most applications fJ11 the screen when launched, but because users can usually move and shrink
documents, the desktop is always there, as a stabilizing element

It is not necessary that the desktop be literally complete. Lots of features of "real"
desktops-pencil sharpeners and gravity, to name just two-can safely be omitted. Stability results
from a consistent illusion. It is the perception of stability that is critical.

See-and-Point versus Remember-and-Type

The Apple Desktop Interface is visual and spatially oriented. Objects-whether text, applications,
documents, lines, or controls-appear on the screen in well thought out and consistent ways. The
screen provides an environment in which people can work effectively, taking full advantage of the
power of the computer at their fIngertips while still enjoying a reasonable and sensible human
environment. Because users must be able to address different parts of the screen, to access the
activities represented by objects, pointing is an essential part of the interface. The mouse is
currently the most common pointing device, but there are other kinds of input devices that do the
same job.

Even more than the WYSIWYG principle, the emphasis on "see-and-point" explicitly adapts to the
way people think and work. The user can access, at any time, any available action, simply by
pulling down the appropriate menu then using the mouse to select an action. If the user is unsure
of what to do, she can quickly scan through all available options and choose one of them.

Even the best of the more traditional command-line interface requires the user to remember (out of
context) and type a command to the computer. This makes unreasonable demands on the user's
memory--especially when the commands are complex or cryptic. This is especially galling to the
new or infrequent user, but it distracts all users from the task and focuses their attention instead on
computer interaction.

The remember-and-type approach has some advantages for some users. When the user is
completely certain of what she wants to do, a simple keystroke can be the fastest way to do it.
Some applications include keyboard equivalents for the most often needed menu items. This is a
logical extension of the desktop interface, and makes it more effective in particular instances-but
keyboard equivalents are an alternative way to access menu items. Users who are learning a new
application, or who are browsing through their options, must always be able to db this through
menus.

CONFJDT:vTJAL: 22 July 1986 4

Hwnan Inteiface Guidelines
The remember-and-type interface makes more options available to the user than the screen can
display at one time. In contrast to the see-and-point interface, where what you see is all you get,
the remember-and-type interface can conceal options. But when you include a large number of
options in a see-and-point application, pull-down menus can become cluttered.

Noun, then Verb

Users generally do things in two distinct steps. First, they select the object-a document, an
application, a block of text-by clicking on it Second, they select the operation to be performed
on this object-print, open, cut, paste, etc. This noun-verb sequence implies action, where the
computer plays the role of getting particular objects to perform according to the user's wishes.

Immediate Feedback

Since users are constantly in charge of their own actions, they require very direct and immediate
feedback on particular actions. They need to know that a particular action is being performed or
has been completed. For example, the user knows a particular document is opened when its
window fills the screen. When an item is highlighted, the user knows that she has selected it.
When a menu name is selected, the menu itself becomes visible. When the pointer is temporarily
deactivated while a process is being completed, it turns into a watch to indicate that it will be some
time before it is active again. When the user selects a paintbrush as a tool for drawing, the pointer
changes into the shape of the paintbrush.

Forgiveness

Control, dialog, ease of learning, direct manipulation, and feedback all encourage
exploration. Even though users demand full documentation with their software, they don't
really want to read manuals. (Do you?) They'd rather figure out how a system works the
same way they learned to do things when they were children: by exploration, with lots of
action and lots of feedback. Applications like the Finder and MacPaint have changed
people's expectations of how computers are learned and used, and the most successful
applications are the ones that follow up on their promise.

"Permission to explore" means that applications allow the user to do anything reasonable. Let
the users know that they can't "break" anything and that they can always cancel risky
operations. The user, not the system, decides what to do next. Event-driven programming
means that an application cannot predict the sequence of tasks it will be expected to perform.
Programs must determine, from moment to moment, what to do by looking for input from the
user.

Now and then, computer users, like other mortals, make mistakes or explore a bit farther
than they really want to. A computer system should be forgiving, always warning users
when they're entering risky territory, then allowing them either to back gracefully away
from the situation--or to plunge ahead, knowing exactly what the consequences are. Even
actions that are not particularly risky should be reversible. Tell the users about any
exceptions to this pattern.

Error messages should appear infrequently. If the user is constantly subjected to a barrage
of error messages, something is wrong with the design of the program. If your application

5 CONFIDE~77AL: 22 July 1986

Human Inteiface Guidelines

includes on-line help, you might want to design it so that error conditions automatically
trigger the help system.

A View of the User

People are extremely complex and varied. A theory of human existence that would provide a
framework for the design of human-eomputer interaction seems a long way off. It would be
oversimplified anyway, because computers themselves change the way people think, feel, and
behave. Computer design and human activity will therefore evolve together. But if computer
designers avoid making sound models for human-eomputer interaction, there can be no evolution
in the field. If a designer is to provide a consistent world that a person can enter with ease and
effectiveness, it is important to have a specific model of how people behave.

The Apple Desktop Interface represents the result of a great deal of concern with the human part of
human-eomputer interaction. It has been designed explicitly to enhance the effectiveness of
people. This approach has frequently been labeled "user friendly," though "user reasonable" is
probably more appropriate. It has been thought of as the ideal interface for beginners, though it
would be more useful to think of it as good for people in general. It has been labeled "simple,"
though "direct" and "effective" make more sense. And it has been described as "easy to learn,"
though "accessible by humans" would be as true.

The following sections discuss the differences between these contrasting descriptions, and describe
the Apple Desktop Interface in the context of the model of human-eomputer interaction that it
assumes.

Human Tasks

Not very long ago, most personal computer users were also programmers. In fact, many of them
were computer builders as well, because personal computers were available only as kits. Today,
most personal computers are seen as tools that magnify a person's ability to perform all kinds of
tasks that formerly were done without computers. The Apple Desktop Interface provides an
environment in which people can perform their many tasks in a consistent and familiar computer
environment--one that supports these human tasks. Tasks are critical. Ideally, the computer
supports the performance of tasks without being a separate focus for the user's attention.

The desktop interface is optimized for non-programmers, for people involved in tasks other than
strictly computer tasks, but it is not just for them. In fact, much of the early development of
computer interfaces was aimed at enhancing the programmer's working environment (it was once
thought that everyone should program). But even programmers often have non-programming
tasks, and the interface also serves them well. It is a human interface, for non-eomputer human
tasks.

Active Users

Unless people are actively involved in what they are doing, they don't remember what they've
done and don't learn much from the experience. Computer interactions require that users
participate in the exchange with the computer. Ii is unfortunate when users react in a non-planned
way to the computer's actions. The Apple Desktop Interface is designed explicitly to maximize the
individual's involvement in computer activities. Most of the time, users have a wide range (not
simply a constrained set) of possible activities from which they choose.

CONFIDENTIA 2 July 19.0 5 6

Human Interface Guidelines

Users can customize the interface to their tastes and tasks. Consider the Control Panel, which
allows them to choose (or create) background desktop patterns, set the sound volume, and so on.
User can arrange icons on the desktop in whatever way helps them categorize and find things.
And they can choose from several ways to view files and documents. All this relieves the
computer designer from having to create a system that matches every person. Instead, the designer
creates a general model that individual users can tailor to their individual needs.

Symbolic Representations

One of humanity's best developed talents is the ability to manipulate symbolic representations-to
communicate with a variety of languages, from written or spoken verbal languages to visual and
gesture languages. The Apple Desktop Interface acknowledges the importance of visual elements
to communication, adding these to more traditional textual systems. Users have a primarily visual
context in which to interact with the computer, and they are provided with tools with which they
can create new visual objects.

In this sense, the interface is a consistent visual language. (It is not really a desktop at all, nor is it
any other "real thing.") Icons, some very realistic and others higWy symbolic, are an important
part of this language. Spatial layout and consistent graphical elements (such as stripes to indicate
activity in a window, and highlighting to indicate selection) give users a great deal of information
about ongoing activity as well as letting them participate in this activity.

Recognition vs. Recall

People recognize objects more effectively than they can recall the same objects. In other words,
they can say that they want a certain object, or they they have seen it before, better than they can
list the same objects out of context. Further, when contextual cues are provided, both recognition
and recall improve. The Apple Desktop Interface carefully provides a consistent visual context for
events, and relies on recognition ("see-and-point") rather than on recall ("remember-and-type").
This lets mental activity focus on the task at hand rather than on remembering commands.

This approach does not, however, dictate the display of all possible options at one time. In the
current implementation of pull-down menus, most of the time most menu items are invisible to the
user. The important thing is that they are immediately accessible.

Learning

People learn best when they get consistent feedback that lets them observe patterns. The
interface's consistent environment promotes learning. It also encourages exploration without
penalty. For example, the user can try something out before really understanding it, without fear
of grave consequences. In the best cases, the interface even encourages "mistakes," showing
users how not to do things so that they can generate an effective model for interactions. It does
this by providing extensive messages that warn users when they are entering into dangerous waters
(for example, "Do you really want to erase your entire disk?").

The user's skill with the interface will increase with experience; it is not expected that everything
should be understood at first glance. The appropriate focus"is on ease of learning and on
safety-not on simplicity or superficiality.

7 CONFIDENTIAL: 22 July 198fi

Hwnan Inteiface Guidelines

Metaphors from Non-Computer Worlds

Most people now using computers don't have years of experience with several different computer
systems. What they do have is years of direct experience with their immediate worlds. To take
advantage of this prior experience, computer des}gners frequently use metaphors for computer
processes that correspond to the everyday worlds that people are comfortable with.

The desktop itself is the primary metaphor for the Apple Desktop Interface. It appears to be a
~urfac~ on which users can keep tools and documents. Elements of this metaphor are seen plainly
III the Icons that represent the documents and fIle folders that appear on the desktop, as well as in
the actions (open, close, and so on) that can be performed on those objects.

Other metaphors are possible, within this particular interface, that can enhance ease of use, and
many actions simply do not correspond to any articulated metaphor. Consider MacPaint's toolbox.
You can reconcile it with the desktop by thinking of these tools as sitting on your desktop, but this
isn't necessary. This alternative metaphor is successful because it makes sense for the task at
hand, without fundamentally contradicting the prevailing metaphor. After all, the major principles
of the desktop interface are consistency and clarity-not "desktop-ness."

Many activities of the Apple Desktop Interface don't match any particular physical intuition
or specific metaphor. For example, scroll bars clearly belong to the computer domain,
bearing only a loose relationship to real scrolls. Pull-down menus aren't much like
restaurant menus, except in providing a choice from alternatives. And the complete
absence of a desktop in some applications is not disconcerting.

A Model for Programming

ROM-based tools provide programmers with a great deal of help in implementing the interface.
Still, providing a consistent and well-designed interface, so that users can keep computing issues
out of their minds, requires a great deal of effort by programmers. It also requires an approach to
programming that is quite different than most people are accustomed to, for the task is not to
simply "get the job done," but to create an environment that lets the user get a job done.

Event Loops

The concept of the event loop is absolutely essential when programming for this interface. The
programmer must anticipate the entire range of activities that a user might perform at any moment.
The more traditional approach is to limit the user's alternatives, often by presenting a series of
menus, each with limited number of alternatives, and each of which disappears (sometimes never
to be found again) when the user makes a choice. Another approach is to have single buttons that
on certain occasions return the user to the "main menu."

The user of the Apple Desktop Interface, on the other hand, can at any time perform a wide range
of actions--quit, open a me, rearrange the icons on the desktop. To enable this enormous
flexibility, programmers must also consider how to block the activities that are not appropriate at a
given time.

CONFIDENTIAL: 22 July j 96 8

Human Interface Guidelines

Modelessness

A mode is a state that the application user has to "enter" and "leave" (such as the edit or
insert mode of many word processing programs). A mode restricts the operations that the
user can perform while the mode is in effect. Because people don't usually operate
modally in real life, having to deal with modes in computer software reinforces the idea that
computers are unnatural and unfriendly. Computer users should never have the feeling
that they're being forced to navigate through a series of twisting passages in order to get to
another part of the program. All appropriate tools and functions should be immediately
available at all times. Using a computer should feel more like a one-room office where all
tools are immediately at hand than like a suite where some tools are in one room and other
tools are in other rooms.

Modes are particularly confusing when a user "enters" one unintentionally. When this
happens, familiar objects and commands may take on unexpected meanings and the user's
habitual actions cause unexpected results.

Most conventional software uses modes heavily. It's tempting to use modes because they
sometimes make programming easier. But if you yield to the temptation too frequently,
users will consider using your application a chore rather than a satisfying experience.

This is not to say that modes are never used in applications. Sometimes a mode is the best
way out of a particular problem. Most of these acceptable modes fall into one of the
following categories:

• Long-term modes with a procedural basis, such as doing word processing as opposed to
graphics editing. In this sense, each application program is a mode, but consistency
between applications makes this acceptable.

• Short-term "spring-loaded" modes, in which the user must constantly do something in
order to maintain the mode. Holding down the mouse button or a key is the most
common example of this kind of mode.

• Alert modes, where the user must rectify an unusual situation before proceeding. Keep
these modes to a minimum.

Other modes are acceptable if they do one of the following:

• They emulate a familiar real-life situation that is itself modal, like picking up different­
sized paintbrushes in a graphics editor. MacPaint and other palette-based applications are
examples of this use of modes.

• They change only the attributes of something, and not its behavior. The boldface and
underline modes of text entry are examples.

• They block most other normal operations of the system to emphasize the modality, as in
error conditions incurable through software. "There's no disk in the disk drive" is an
example.

If an application uses modes, there must be a clear visual indication of the current mode, and the
indicator should be near the object being most affected by the mode. A good example is
MacPaint's changing pointer, which looks like a pencil, paintbrush, spray can, eraser, or
whatever--depending on the function ("mode") the user has chosen. It should also be very easy to
get into or out of the mode (such as by clicking on a palette symbol).

9 rONFIDENTIAL: 22 July 1986

Human Inteiface Guidelines

Keeping the User Informed

It is easy to say that the user is in charge of computer interactions. More difficult is to give the user
the information he needs to make reasonable choices. Users should have more information than
just the absolutely essential-that's what dialog boxes and alert boxes are for. For example,
instead of just being told that a particular action is not possible, the user should have a brief
explanation why. Instead of just performing a necessary activity, the system should describe it
and request the user's acknowledgement (through an OK box).

Visual Integrity

In traditional programming, the visual appearance of the screen is somewhat arbitrary, and often a
relatively low priority. In contrast, applications using the Apple Desktop Interface require a very
high precision in visual layout and the defInition of elements. It is the screen display that carries
most of the information in this interface.

Programmers have excellent tools to meet this requirement-including fonts, graphic display
routines, and tools such as pull-down menus, scroll bars, and so on-but substantial visual
planning is still required. Distinguish different objects visually on the screen. Consider the
customizing the user may do. And be sure each display makes sense as a whole.

User Initiation

Programmers are often tempted to take care of many details for the user, keeping the user unaware
of much that is going on, and often completing actions on the user's behalf. The concept of user
control does not allow this. Though the user doesn't need to know all about the code or the
functioning of the hardware, the user does require a functional description. The user makes
decisions, not the system. This concept is also pragmatic, given the general approach of
programming for this environment: because the user, at any given moment, is selecting from a
wide range of actions, it is usually not possible for the system to determine just what is "best" for
the user.

Reversible Actions

Because the Apple Desktop Interface encourages exploration, users can very easily choose a path
they didn't really intend to take. This is all right, unless the results are so unpleasant that users
regret their exploration and hesitate to do it again. For this reason, almost everything the user does
can be reversed. If a user starts to print a document, then decides against it, he can stop the
printer. If a user moves an icon from one place to another, then decides it belongs somewhere
else, she can move it again.

When users initiate operations that can't be reversed, the program should explicitly tell them that
and give them the opportunity to back out. For example, if I indicate that I want to replace one
document with another, ask me to confirm the request before it's carried out. When I quit
working on a document, ask me if I want to incorporate the changes made since the last save.

CONFlu.L.-'l TTT,AL': 22 July 1986 10

Human Interface Guidelines

CelBlBl:lftieatitHi in Plain Language

The computer must communicate in plain language. Don't use computer jargon that impresses or
intimidates more than it informs or clarifies. Because the desktop interface doesn't support
traditional system prompts, and because most of its actions are determined when the user selects
from available possibilities, there is seldom need for many words. When words are needed, it
usually happens in dialog boxes, when the user is asked to choose among alternatives or to
acknowledge a situation.

The Screen

All interactions between user and application take place in the context of the screen.
Though it does not represent a functional description of the Apple Desktop Interface, the
screen is the stage on which the interactions are made visible. The programmer's task is to
make the screen to mirror ongoing activities, to make explicit which actions are possible,
and to make clear the consequences of any particular action.

Graphic Communication

Good design must communicate, not just dazzle. It must inform, not just impress.

Clear communication is the real point of graphic design. Graphic design is utilized in things we
see every day-from billboards to business cards to books. In the desktop interface, everything
the user sees and manipulates on the screen is a graphic of some sort. As much as possible, all
commands, features, and parameters of an application, and all the user's data, appear as graphic
objects on the screen.

These graphics are not merely cosmetic. When they are clear and consistent, they contribute
greatly to ease of learning, communication, and understanding. In order for the graphic to be
successful in the interface, there must be a balance between the creativity of the graphics and the
user's satisfaction and success in understanding the interface.

All user interface graphics should be designed with the medium of the computer screen in mind.
Computer screens are of a particular size, aspect ratio, and bit depth. A 512K Macintosh has an
aspect ratio that produces approximately square pixels that are either black or white. An Apple II
doesn't have a square aspect ratio, nor is it black and white. If you design your icons and graphics
on the target screen, rather than on paper, you will take advantage of whatever that screen has to
offer and have the best design possible.

Visual Consistency

Visual consistency means that "what you see is what you get." Its purpose is to construct a
consistent and believable environment for users (in this case a desktop environment). Users can
easily transfer their skills from a real desktop to the computer desktop. This transfer of skills is
one of the most important benefits of a good interface, especially for beginning users. Since
concepts like storing documents in folders and throwing things away in the trash are the same in
both the real world environment and the desktop environment, users do not have to re-learn these
in order to begin to work.

11 CONFIDENTIAL: r July J986

Human Interface Guidelines

The principle of visual consistency is the foundation for the design of the graphics on the screen.
Things look like what they represent. Icons are the best example of this. Most icons represent
items normally found in offices--documents, folders, and trash cans. Whenever possible, the
icons on the screen should look like familiar objects. Further, the appearance of an icon should
suggest its function. For example, if the icon looks like a trash can, it should also function like a
trash can, and you should be able to throw things away in it. (Application icons for the most part
do not have a counterpart in the real world; they rely on the context of the environment to be
understood.)

Photographic realism is not essential. The important thing is that the user gets the intended
meaning. A caricature often does this better than a completely realistic picture.

If two objects function differently, it's important that they look different. There are certainly times
when something does not have a real world equivalent, like databases or program files; in this case
a symbol that conveys the basic concept can be tested on users.

If images don't efficiently convey meaning, the user is lost in an environment of random objects,
and communication breaks down. Remember the principle of a friendly dialog between the user
and the computer. Graphics-the icons, windows, dialog boxes, and so on-are the basis of this
dialog and must be designed with this in mind.

Simplicity

The oldest, and still the best, design maxim is simple design is good design. Don't clutter the
screen with too many windows, overload the user with complex icons, or put dozens of buttons in
a dialog box. Because there isn't a lot of space in an icon or dialog box, the messages conveyed
there must be simple and straightforward. For example, the icon of a trashcan should be a simple
representation of that familiar object; the essence of trashcans distilled into a single image that
people can easily understand. Simple designs are easy to use and to learn and and help give the
interface a consistent look.

Keep in mind that the icons, menus, and other graphic elements on the screen together make up a
basic language that the user and the computer use to communicate. The user selects an icon and
chooses an action from a menu. Together these actions tell the computer something, like open
MacPaint. In order for this language to work well, the messages must be simple.

If you expect your application to be used in more than one country, be aware ofcultural
differences. Words aren't the only things that change from country to country. Telephones and
mailboxes, to name just two examples often used in telecommunications programs, don't look the
same in all parts of the world. Either make your graphics culturally neutral, or be prepared to
create alternate graphics for various cultures.

Clarity

Understand the purpose of the graphic before you begin design work. What is the purpose of a
dialog box? Are you allowing the user to choose settings? To move files? To edit a pattern? Or to
change a name? Users need to be able to find their way around in a dialog or alert in order to know
how to respond to it. Sometimes a picture is not the answer-there may be times when words are
better. What information is being requested? Where do does the user enter it? How does the user
make the thing go away? What title in the button makes the most sense?

CONFIDENTIAL: 22 July 1986 12

Hwnan Interface Guidelines

Make graphics clear and readable. Try them out on end users, not just on your fellow artists or
programmers. The path that the user's eye and mind take through a dialog box must be as clear as
a pane of glass. The most important part of the graphic should be recognized fIrst, then the second
most important part, and so on. Use visual clues such as arrows, movement, and the arrangement
of elements to direct the eye to the correct place. The default button in a dialog box, with a darker
outline than that of the other buttons, is a good example of this. The symbols used in different
kinds of alerts tell the user if the alert is a note, caution, or warning. The placement of certain
elements tells users immediately what they are dealing with: an icon in the upper left corner of a
box mean it is some kind of alert; the double line around a dialog box (instead of the normal title
bar) distinguished it from a window.

Animation, when used sparingly, is one of the best ways to draw the user's attention to a particular
place on the screen (the quickest way to fmd a pointer on a busy screen is to move the mouse,
causing the pointer to move). Animated pointers can be used to reassure the user, during a lengthy
process such as saving a large document to disk, that the system is alive and well.

Some Graphics Rules of Thumb

• Icons should be memorable. If they're not immediately recognizable, they should be easily
learnable.

• Don't unexpectedly change the way the screen looks. For example, don't scroll automatically
more than necessary and don't redraw objects unnecessarily.

• The Apple desktop is a two-dimensional world. Resist the temptation to design icons with a
three dimensional or perspective effect, unless there's no other way to convey the information.
If several three-dimensional icons appear on the screen together, it's inevitable that they'll have
several different perspectives, interfering with the illusion of reality. A drop shadow below and
to the right of windows and menus is used, however, to visually separate overlapping
two-dimensional objects (see Figure 1).

L

Figure 1. Drop Shadows

13

~
Drop shadow

CONFIDENTIAL: 22 July 1986

Hwnan Interface Guidelines

Keeping the Promise to Disabled People

Computers hold tremendous promise for people with many kinds of disabilities.
Computers can magnify the productivity and mobility of disabled people even more than
for other users. But too often, computers perversely become obstacles rather than
enablers, because many disabilities make it hard to use standard computers and software.
In most cases, thoughtful hardware design is the solution, but there are things that software
designers can do, too.

Many of the modifications that make programs easier for disabled people to use are simple
and inexpensive to make, and they often have a welcome and unexpected side effect-the
programs are easier for everyone to use. Although sidewalk curb cuts are designed to help
people who rely on crutches and wheelchairs, they are used and appreciated at least as
much by the more able-bodied population. Similarly, keyboard shortcuts for mouse
activities are provided because using the mouse is difficult for people with motor
problems-but other users take advantage of them as well.

For more information on the needs of disabled people, contact Apple's Office of Special
Education Programs.

Vision Disabilities

People with vision problems have the most trouble with the output display. The
Macintosh's ability vary the size of display text makes it easy to accommodate the needs of
many people with vision problems. Software can be designed with a "zoom" feature that
automatically increases the size of characters on the screen. Some systems even allow
changing the size of the system font (but consider the effect this would have on the width
of title bars and of the menu bar).

Color can present problems for many people. Don't let people's ability to use your
software depend on their ability to distinguish one color from another. Be sure that all
information contained in color-coded portions of the display is also presented in some
other way (capitalization, position, highlighting).

Physical Disabilities

Many people can use keyboards only with mouthsticks or similar devices. They can press
only one key at a time. They need software that allows them to press the modifier key first,
then the character key, rather than requiring that both are pressed simultaneously. The
modified state is in effect for just the one keypress, then reverts to the unmodified state.
Hitting the modifier key twice causes the computer to lock in the modified state; a third
press of the modifier key unlocks the modification. (If software does require that two or
three keys be pressed at once, at least choose the keys such that a person can do it with one
hand.)

Hearing Disabilities

People with hearing problems generally have little difficulty using computers, except when
important cues are given only with sound. Software should never rely solely on sound to

CONFIDENTIAL: 22 July 1986 14

Human Interface Guidelines
provide important infonnation to the user. Supplement all audible messages with visible
cues.

Other Disabilities

People with cognitive or verbal impairments are greatly helped by clear and simple
language, icons with obvious meanings, and carefully designed displays. Don't make the
user's success depend on his or her ability to remember many different things. Another
way to make computers easier for both disabled people and others is to provide macros,
making it possible to combine a number of keystrokes and mouse movements into one
keystroke.

Manuals

Many people have difficulty using the instruction manuals that usually accompany software
products, either because they have difficulty reading the words or because they physically can't
handle books. These people appreciate having at least the most important part of the manual's text
in electronic form, so that they can display or print it in oversize characters, print it with a Braille
printer, or have it read to them through a speech synthesizer. All users benefit from manuals in
electronic fonn, which can quickly be searched for specific topics and keywords.

15 CONFIDENTIAL: 22 July 1986

Chapter 2

Human Interaction: Pointing,
Selecting, and Editing

The computer and the human user interact mainly through an application program
(often called simply an application). An application is any program that allows the user to
manipulate any kind of information within a computer system. When an application is
active, it's in control of all communications between the user and the system. The active
application's menus are in the menu bar, to the right of the standard menus.

A document is where an application stores the data that the user creates. Each document
is a unified collection of information-a business letter, list, worksheet, chart, animation
sequence, or piece of music. A complex application, such as a data base system, might
require several related documents. Some documents can be processed by more than one
application; but each document has a principal application, which is usually the one that
created it. If other applications can process the same document, they are called the
document's secondary applications. Opening a document, whether through a menu or
through double clicking its icon, launches the application that originally created that
document (assuming the application is on a mounted disk or in memory).

The only way the user can access the document is through a window. A window is a
view into the document-if the document is larger than the window, the window is a view
of a ponion of the document. The application puts one or more windows on the screen,
each window showing a view of a document or of auxiliary information used in processing
the document.

Generally, it is unwise to allow multiple windows for the same document. It confuses the
relationship of windows to icons ("which window do I close to close the document?"). If
multiple views are desirable, the window can be split. The part of the screen underlying all
the windows is called the desktop.

Hwnan Interface Guidelines

Menu Bar

~ File Edit Uiew Special

773K available

Illllllillillill
personnel

o
taxes

13K in disk

Data

o
chartsletters

1llllllllllllil!

4 items

personnel
13K in disk 773K availab le

3 items

o
1984

letters
13K in disk

o
1985

o
1986

2 items

o
A-L

o
M - 2

Window Desktop Icon Icon

Figure 2. Desktop, Windows, and Icons

The Finder is an application program that lets the user organize, copy, move, rename, and
delete documents, and to launch other applications. When the Finder is active, and the user
opens either an application or a document belonging to an application, the application
becomes active and displays the document window. In a single-application environment,
only one application can be active at a time, that application has control of all windows
(except desk accessories), and the user returns to the Finder to change from one application
to another. Multiprocessing will eventually allow several active applications to share the
screen, each having control over its own windows, and the user will be able to switch
applications directly, without returning to the Finder.

The Pointing Device
The pointing device makes possible the direct manipulation that is a central part of the
desktop interface. To communicate with the computer, the user manipulates graphical
objects on the screen. This manipulation is direct because the user can grab (or seem to

17 CONFIDENTIAL 22 Ju(1986

Human Inteiface Guidelines

grab) an object,. then indicate what is to be done with it. How do you "grab" an object that
yu see only as a two-dimensional representation on a glass screen? By pointing at it with a
pointing device.

The standard pointing device is the mouse, but there are other devices (track balls, for
example) that perform the same functions. The mouse is a hand-held device, usually (but
not necessarily) connected to the computer by a long, flexible cable. There's a single
button on the mouse. The user holds the mouse and rolls it on a flat, smooth surface. A
pointer on the screen follows the motion of the mouse. A pointer is a screen object that
moves in response to mouse movements. Pointers can take different shapes according to
the context of the application. Two of the most common pointer shapes are crosshairs and
arrows.

Simply moving the mouse (without pressing the mouse button) just moves the pointer.
Most actions take place only when the user positions the pointer over an object on the
screen, then presses and releases the mouse button.

What About the Cursor? (a Digression)

Traditional character-oriented command-line interfaces rely on a "cursor" to indicate the
insertion point (the place on the display where the next character that is typed will appear).
Because there is just one insertion point, one cursor is sufficient. The user uses arrow
keys (sometimes called "cursor keys") to move the cursor around the screen.

The desktop interface requires that the cursor's functions be divided between two screen
elements. An "insertion point" shows where the next characters to be typed will appear. In
addition, the "pointer" (logically attached to the mouse or other pointing device) shows
where the insertion point should be moved to.

In a graphical interface, pointing at objects then selecting operations from a menu replaces
the "command line." The screen is full of objects the user can point to; using arrow keys to
move a cursor is an unsatisfactory way to point to them.

Mouse Actions

Beyond moving the pointer, the basic mouse actions are clicking, pressing, and dragging.

Clicking has two components: pushing down on the mouse button and then quickly
releasing it while the mouse remains stationary (if the mouse moves, dragging-not just
clicking-is what happens). Some uses of clicking: to select an object, to select an insertion
point, to make a menu visible. The effect of clicking should be immediate and evident. If
the function of the click is to initiate a command, the selection happens when the button is
pressed, and the command is initiated when the button is released. Double clicking
involves a second click that follows immediately after the end of a first click. Some uses of
double clicking: to open an object, to select a larger object than one that can be selected by
a single click. There's more about double clicking later in this chapter. Applications can
also defme triple clicking, but this is not recommended.

Pressing means holding the mouse button down for a time while the mouse remains
stationary. Pressing on the scroll bar's arrows, for example, causes scrolling until the user
releases the mouse button. For certain kinds of objects, pressing on the object has the
same effect as clicking it repeatedly. For example, clicking a scroll arrow causes a

Co.".FIDENTJAL 22 July 1986 18

Human Interface Guidelines
document to scroll one line; pressing on a scroll arrow causes the document to scroll
continuously until the user releases the mouse button or reaches the end of the document.

Dragging means pressing the mouse button, moving the mouse to a new position, and
finally releasing the mouse button. Dragging can have different effects, depending on
what's under the pointer when the mouse button is pressed. The uses of dragging include
selecting blocks of text, choosing a menu item, selecting a range of objects, moving an
object from one place to another, and shrinking or expanding an object.

Some objects, especially graphic objects, can be moved by dragging. The application
either moves the entire object, or attaches a dotted outline of the object to the pointer and
moves the outline as the user moves the pointer (when the user releases the mouse button,
the application redraws the complete object at the new location).

An object being moved can be restricted to certain boundaries, such as the edges of a
window. If the user moves the pointer outside the boundaries, the application stops
drawing the dotted outline of the object. If the user releases the mouse button while the
pointer is outside the boundaries, the object doesn't move. If, on the other hand, the user
moves the pointer back within the boundaries again before releasing the mouse button, the
outline is drawn again.

In general, moving the mouse changes nothing except the location, and possibly the shape,
of the pointer. (Pointer shape is discussed elsewhere in this book.) Pressing the mouse
button indicates the intention to do something, and releasing the button completes the
action. Pressing by itself should have no effect except in well-defined areas, such as scroll
arrows, where it has the same effect as repeated clicking.

Mouse-ahead (analogous to the keyboard's typeahead) saves, in a memory buffer, any
mouse actions the user performs when the application isn't ready to process them. The
application can then carry out these stored processes when it has time. Alternatively, the
application can choose to ignore saved-up mouse actions, but should do so only to protect
the user from possibly damaging consequences.

Double Clicking

As stated already, double clicking involves a second click that follows immediately after the
end of a first click. If the two clicks are close enough to one another in terms of time (as
set by the user in the Control Panel) and of screen location, then they constitute a double
click. Its most common use is as a shortcut way (but never the only way) to perform an
action. For example, clicking twice on an icon is a faster way to open it than selecting it
and choosing Open; clicking twice on a word to select it is faster than dragging through it.

Some applications support selection by double clicking and triple clicking. As always with
multiple clicks, the second click extends the effect of the first click, and the third click
extends the effect of the second click. For example, in a text-oriented application, the first
click selects an insertion point, the second click might select the whole word containing the
insertion point, and the third click might select the whole sentence. In a graphics
application, the first click might select a single object, and double and triple clicks might
select successively larger sets of objects.

19 eGJI. . 1DENTIAL 22 July 1986

Human Inteiface Guidelines

Three clicks is probably the practical limit, and even that is difficult for many peopl~. If an
application defines the effect only of single and double clicking, a third click should have
no effect. If triple clicking is defined, then the fourth click should have no effect.

Double clicking is a shortcut for those users physically able to use it. For example, users
with a little experience like to be able to launch an application by double clicking on its icon
rather than clicking on it to select it and then selecting Open from the File menu. Again,
double clicking should never be the only way to accomplish a task. Many novice users,
children, and disabled people have a hard time double clicking.

To allow the software to distinguish efficiently between single clicks and double clicks on
objects that respond to both, an operation invoked by double clicking an object must be an
enhancement, superset, or extension of the feature invoked by single clicking that object.
Triple clicking is also possible; it should similarly represent an extension of a double click.

Insertion Points and Pointers

Each pointer has a hot spot, the portion of the pointer that must be positioned over a
screen object before mouse clicks can have an effect on that object. The hot spot should be
intuitive, such as the tip of an arrow pointer or the center point of a crosshair pointer.
Mouse clicks have effect only when the pointer's hot spot is positioned over the target
object's hot zone.

Don't confuse the user by changing the pointer's shape without a reason. You might want
to have the pointer change shape to give feedback on the range of activities that make sense
either in a particular area of the screen or in a current mode. Sometimes, the result of
mouse actions depends on the item under the pointer when the mouse button is pressed.
Where an application uses modes for different functions, the pointer can be a different
shape in each mode. For example, in MacPaint, the pointer shape always reflects the
currently selected tool.

Figure 3 shows some examples of pointers and their effect. An application can use
additional pointers as needed for other contexts.

CONFIDENTIAL 22 Jul,v 1986 20

Hwnan Inteiface Guidelines

Pointer Name Used for

~ Arrow Scro II bar and other contro Is) size box)
tit Ie bar) menu bar) desktop) and so on

I I-beam Selecting and inserting text

+ Crosshairs Drawin'1 shrinkin'1 or stretching
graphic objects

~ Plus Sign Selecting fields in an array

e Wristwatch Showing that a lengthy operation is
in progress

S Spinning Showing that the system is sti II al ive
Beachball during a lengthy operation

Figure 3. Pointers

During a particularly lengthy operation, when the user can do nothing but wait until the
operation is completed, the pointer may change its shape and become a status or progress
indicator. This indicator lets the user know that the system hasn't died-it's just busy.
The standard pointer used for this purpose is a wristwatch. During even longer operations,
the beachball pointer spins to provide positive feedback that all is well.

The Keyboard
The keyboard is used primarily for entering text. (Thanks to the point and click features of
the desktop interface, users don't have to use the keyboard to type commands.) The keys
on the keyboard are arranged in familiar typewriter fashion. Because keyboards vary from
one computer to another, no specific one is illustrated here.

There are two kinds of keys: character keys and modifier keys. A character key sends
characters to the computer. A modifier key alters the meaning of a character key if it's
held down while the character key is pressed, or alters or amplifies the meaning of a mouse
action.

Character Keys

Character keys include keys for letters, numbers, and symbols, as well as the Space bar. If
the user presses one of these keys while entering text, the corresponding character is added
to the text. Other keys, such as the Enter, Tab, Return, Backspace, and Clear keys, are
also sent to the application as character keys; the result of pressing one of these keys
depends on the application and the context.

CONFIDENTIAL 22 July 1986

"

Human Inteiface Guidelines

The Enter key tells the application that the user is through entering information in a
particular area of the document, such as a field in an array. Most applications add
information to a document as soon as the user types or draws it. However, the application
may need to wait until a whole collection of information is available before processing it.
In this case, the user presses the Enter key to signal that the information is complete. Both
Enter and Return can be used to dismiss dialog and alert boxes. (See "Dialogs and
Alerts.")

The Tab key is a signal to proceed: It signals movement to the next item in a sequence.
Tab often implies an Enter operation before the Tab motion is perfonned.

The Return key is another signal to proceed, but it defines a different type of motion
than Tab. A press of the Return key signals movement to the leftmost field one step
down (just like a carriage return on a typewriter). Return can also imply an Enter
operation before the Return operation. Both Return and Enter can also be used to
dismiss dialog and alert boxes. (See "Dialogs and Alerts.")

During entry of text into a document, Tab moves the insertion point to the next tab stop,
Retum moves it to the beginning of the next line, and Enter is ignored.

The Backspace key deletes text or graphics. Generally, Backspace deletes a selection
without putting it in the clipboard, and to delete the character t.o the left of the insertion
point. Using the clipboard and Backspace in text is described in "Text Editing."

The Clear key has the same effect as the Clear command in the Edit menu; that is, it
removes the selection from the document without putting it in the Clipboard. Using this
key is also explained in "Text Editing." Because not all Apple computers have Clear keys,
no application should ever require use of the Clear key.

Modifier Keys

Modifier keys are the keys on the keyboard that alter the way other keystrokes are
interpreted. They are the Shift, Option, Caps Lock, Control, and Apple (or Command) keys.
Not all Apple keyboards contain all of these keys. These keys sometimes affect the way the
mouse button is interpreted as well. While one of these keys is being held down, the effect of
the other keys (or the mouse button) may change. Many applications It is important that these
keys be used consistently from program to program, as outlined in these guidelines.

The Shift and Option keys let the user choose between the characters on each character key.
Shift gives the uppercase letter on alphabetic keys, or the upper character on two-character
keys. The Shift key is also used in conjunction with the mouse for extending a selection.
(See "Selecting.") Option gives an altemate character set interpretation, including
intemational characters, special symbols, and so on. For example, in most Macintosh
fonts, Option-4 produces the ¢ symbol, Option-r produces ®, Option-g produces ©, and
so on. Shift and Option can be used together, in combination with a character key, to
produce yet other symbols-for example, Option-Shift-? to produce the Lcharacter so
important to Spanish writers.

Caps Lock latches in the down position when pressed, and releases when pressed again.
When down it gives the uppercase letter on alphabetic keys. Caps Lock has the same effect
on alphabetic keys that the Shift key has, but Caps Lock has no effect on any other keys.

CONFIDENTIAL 22 July 1986 22

Human Interface Guidelines

The Apple key key is variously labeled with an Apple symbol, with a cloverleaf symbol,
or with both. It has also been known as the Command key or Open Apple key. Pressing a
character key while holding down the Apple key usually tells the application to interpret the
key as a command, not as a character. (See "Commands.") In some applications, the
Apple key is used with other keys to provide special functions or shortcuts-for example,
Macintosh's Apple-Shift-3 to save a screen snapshot to disk.

Typeahead and Auto-Repeat

If the user types when the computer is unable to process the keystrokes immediately, or
types more quickly than the computer can handle, the extra keystrokes are queued for later
processing. This queuing is called typeahead. There's a limit (it varies according to the
computer) to the number of keystrokes that can be queued, but the limit is usually not
reached unless the user types while the application is perfoIming a lengthy operation.

When a character key is held down for a certain amount of time, it starts repeating
automatically. This feature is called auto-repeat. The user can set the delay and the rate
of repetition with the Control Panel desk accessory. An application can tell whether a
series of keystrokes was generated by auto-repeat or by pressing the same key several
times. It can choose to disregard keystrokes generated by auto-repeat; this is usually a
good idea for menu commands chosen with Apple-key combinations.

Holding down a modifier key has the same effect as pressing it once. However, if the user
holds down a modifier key and a character key at the same time, the effect is the same as if
the user held down the modifier key while pressing the character key repeatedly.

Auto-repeat does not function during typeahead. It operates only when the application is
ready to accept keyboard input.

International Keyboards

The international keyboard has one more key than the U.S. version. The layout of the
international version is designed tb conform to the International Standards Organization
(ISO) standard. The U.S. keyboard resembles standard American office typewriters.
International keyboards have different labels on the keys in different countries, but the
overall layout is the same.

Arrow Keys

Some Apple keyboards include four arrow keys: Up Arrow, Down Arrow, Left Arrow,
and Right Arrow.

23 CONFIDENTIAL 22 July 1986

/

Human Inteiface Guidelines

Figure 4. Macintosh Plus Arrow Keys

Appropriate Uses for the Arrow Keys

The arrow keys don't replace the pointing device. They can be used as a shortcut way to
move the insertion point, and (under some circumstances) to make selections. These are
the minimum guidelines for arrow keys; you can expand on them where things are left
undefined, if you do it in the spirit of the whole guidelines.

It's up to you to decide whether it's worth the effort to create arrow-key shortcuts for
mouse functions. Many users find that remembering a key combination on the order of
Command-Shift-Left Arrow is more trouble than it's worth and they'd rather use a mouse
anyway. Many others prefer using the keyboard under certain circumstances. And some
people have difficulty using a mouse; they appreciate being able to use the keyboard
instead.

An application should use the arrow keys only when appropriate to the task. Applications
that deal with text or arrays (word processors, spreadsheets, and data bases, for example)
have an insertion point. This insertion point can be moved both by the mouse and by the
arrow keys. Graphics applications, on the other hand, have no insertion point.

As a general rule, arrow keys are used to move the insertion point and to expand or shrink
selections. Arrow keys are never used to duplicate the function of the scroll bars or to
move the pointer. In a graphics application, arrow keys can be used to move objects in
one-pixel increments.

These guidelines apply both to moving the insertion point and to making selections.
Making a selection works the same way as moving the insertion point, except that the Shift
key is held down. When Shift is used together with an arrow key, it signifies that the user
wants to make a selection, much like using the Shift key while clicking the mouse.

Moving the Insertion Point ,-

The Left Arrow and Right Arrow keys move the insertion point one character left and right,
respectively.

Up Arrow and Down Arrow move the insertion point up and down one line, respectively.

Horizontal screen position is maintained in terms of screen pixels, but not necessarily in
tenns of characters. (Character boundaries seldom line up vertically when proportional

CONFIDENTIAL 22 July 1986 24

Human Interface Guidelines

fonts are used.) When the insertion point moves to a new line, it may also move slightly
left or right, to the nearest character boundary on the new line. During successive
movements up or down, the application should keep the insertion point as close as possible
to the original horizontal position as it moves from line to line.

Moving the Insertion Point in Empty Documents

Various text editing programs treat empty documents in different ways. Some assume that
an empty document contains no characters, in which case clicking at the bottom of a blank
screen causes the insertion point to appear at the top. In this situation, Down Arrow cannot
move the insertion point into the blank space (because there are no characters there).

Other applications treat an empty document as a page of space characters, in which case
clicking at the bottom of a blank screen puts the insertion point where you clicked and lets
you type characters there, overwriting the spaces. Down Arrow moves the insertion point
straight down through the spaces.

Whichever paradigm you choose for your application, it's vital that you're consistent.

Modifier Keys with Arrow Keys

Holding down the Apple key while pressing an arrow key should move the insertion point
to the appropriate edge of the window. If the insertion point reaches the edge of the
window, then the document is scrolled one windowful in the appropriate direction and the
insertion point moves to the same edge of the new windowful. Apple-Up Arrow moves
the insertion point to the top of the window, Apple-Down Arrow to the bottom,
Apple-Left Arrow to the left edge, and Apple-Right Arrow to the right edge (but not past
the last character).

The Option key is reserved as a "semantic modifier" key. The application determines what
the semantic units are. For example, in a word processor, where the basic semantic unit is
the character and the next larger one is the word, Option-Left Arrow and Option-Right
Arrow might move the insertion point to the beginning and end, respectively, of a word.
(Movement of the insertion point by word boundaries should use the same definition of
word that the application uses for double clicking.) The next larger semantic unit could be
defined as the sentence, in which case Option-Shift-Left Arrow and Option-Shift-Right
Arrow would move the insertion point to the beginning and end, respectively, of a
sentence. In a programming language editor, where the basic semantic unit is the token and
the next larger one might be the line, Option-Left Arrow and Option-Right Arrow might
move the insertion point left and right to the beginning and end of the line, respectively.

In an application (such as a spreadsheet) that represents itself as an array, the basic
semantic unit would be the cell. Option-Left Arrow would designate the cell to the left of
the currently active cell as the new active cell, and so on. Using modifier keys with arrow
keys doesn't do anything to the data; Option-Left Arrow just perfonns an Enter and moves
the selection to the next cell to the left.

Though the use of multiple modifier key combinations (such as Command-Dption-Left
Arrow) is discouraged, it's all right to use the Shift key with anyone of the other modifier
keys for making a selection. (See "Making a Selection With Arrow Keys.") Keep in mind
that if multiple keys must be pressed simultaneously, they should be fairly close
together-otherwise many people won't be able to use that combination.

25 CONFIDENTIAL 22 July 1986

Human Inteiface Guidelines

Making a Selection With Arrow Keys

To use arrow keys to make a selection, the user holds down Shift while pressing an arrow
key. Application programs that depend (as TextEdit does) on the numeric keypad should
not use these Shift-Arrow key combinations. This is because the key codes for the four
Shift-arrow key combinations are the same as those for the keypad's +, "', /, and:= keys.
If the use of Shift-arrow for making selections is more important to your application than is
the numeric keypad, the following paragraphs tell how it should work.

After a Shift-arrow key combination has been pressed, the insertion point moves and the
range over which it moves becomes selected. If both the Shift key and another modifier
key are held down, the insertion point moves (as defined for the particular modifier key)
and the range over which the insertion point moves becomes selected. For example,
Shift-Left Arrow selects the character to the left of the insertion point,
Command-Shift-Left Arrow selects from the insertion point to the left edge of the
window, and Option-Shift-Left Arrow selects the whole word that contains the character
to the left of the insertion point Gust like double clicking on a word).

A selection made by using the mouse is no different from one made by using arrow keys.
A selection started with the mouse can be extended by using Shift and Left or Right Arrow.

The two ends of a selected range have different characteristics and different names. The
anchor point is the location of the insertion point when selection was started. The
active end is the place to which the insertion point moves to complete the selection.
Once selection begins, the anchor point cannot be moved except by beginning a new
selection. To extend or shrink a selection, the user moves the active end as specified here.
As the active end moves, it can cross over the anchor point.

In a text application, pressing Shift and either Left Arrow or Right Arrow selects a single
character. Assuming that the Left Arrow key was used, the anchor point of the selection is
on the right side of the selection, the active end on the left. Each s:ubsequent
Shift-Left Arrow adds another character to the left side of the selection. A
Shift-Right Arrow at this point shrinks the selection. Figure 5 summarizes these actions.

1. Insertion point is within a word:

2. Shift-" is pressed:

3. another Shift-":

4. Shift-m+:

5. three more times Shift-m+:

Wcfd

Wlrd

Brd

Wlrd

wqm

Figure 5. Selecting With·Shift-Arrow Keys

Pressing Option-Shift and either Left Arrow or Right Arrow (in a text application) selects
the entire word containing the character to the left of the insertion point. Assuming
Left Arrow was used, the anchor point is at the right end of the word, the active end at the
left. Each subsequent Option-Shift-Left Arrow adds another word to the left end of the
selection, as sho\\'n in Figure 6.

CONFIDENTIAL 22 July 1986 26

1. Insertion point is within a word:

2. Option-Shift-" is pressed:

3. another Option-Shift-":

Hwnan Interface Guidelines

another wctd

anotherBl]

Figure 6. Selecting With Option-5hift-Arrow Keys

Pressing Command-5hift-Left Arrow (in a text application) selects the area from the
insertion point to the left edge of the window. The anchor point is at the right end of the
selection, the active end is at the left. Each subsequent Command-5hift-Left Arrow scrolls
the document one windowfulleft and extends the selection to the left edge of the new
window.

Extending or Shrinking a Selection

To use arrow keys instead of the mouse to extend or shrink a selection, the user holds
down the Shift key (plus any defined modifiers) while pressing an arrow key. The arrow
key moves the insertion point at the active end of the selection.

Undoing a Selection

When a block of text is selected, pressing either Left Arrow or Right Arrow deselects the
range. If Left Arrow is pressed, the insertion point goes to the beginning of what had been
the selection. If Right Arrow is used, the insertion point goes to the end of what had been
the selection.

Selecting
Before performing an operation on an object (or several objects), the user must select it,
usually by clicking on it, to distinguish it from other objects. Selecting the object of an
operation before identifying the operation itself is a fundamental characteristic of the Apple
human interface. The pattern is usually something like this:

1. The user selects an object (a noun, the thing to be operated on).
2. The user selects an operation (a verb, the thing to be done).

This is sometimes called the "noun-verb paradigm" or "Hey, you! Do this!"

There is always a visual cue to show that something has been selected. For example, text
and icons usually appear in inverse video when selected. In some situations, other forms
of highlighting may be more appropriate. The important thing is that there should always
be immediate feedback, so that the user knows that the click had an effect.

Selecting an objer,t doesn't alter the contents of a document. Making a selection shouldn't
commit the user to anything; there should never be a penalty for making an incorrect
selection. The user can undo any selection by making any other selection.

How something is selected depends on what it is. Although there are many ways to select
objects, they fall into easily recognizable groups. Users get used to selecting objects in a

27 CONFIDENTIAL 22 July 1986

Human Interface Guidelines

certain way, and applications that use these methods are easier to learn. Some of these
methods apply to every type of application, and some only to particular types of
applications.

Types of Objects

It's useful to distinguish among the three types of objects with which an application can
deal: text, graphics, and lists (or arrays). Strictly speaking, everything on a Macintosh
screen is displayed graphically, because the Macintosh has no text mode.

CONFIDENTIAL 22 July 1986 28

Human Inteiface Guidelines

The rest to some fai nt meani ng make pretence
But Shad\v'e11 neve r devi ates into se nse.
Some beams of \v'it on other souls may fall,
Stri ke through and make a 1ucid interval;
But Shad\v'ell's genuine night admits no ray,
His risi ng fogs prevail upon the day.

MacFlecknoe

Text

Page 1

Advertisi ng 132.9

Manufacturi ng 121.3

R&D 18.7

Inte rest 12.2

Total 285.1

Arrey

Graphics

Figure 7. Three Ways of Structuring Infonnation

Text can be arranged on the screen in a variety of ways. Some applications, such as word
processors, might consist of nothing but text, whereas others, such as graphics-oriented
applications, might use text almost incidentally. It's useful to consider all the text
appearing together in a particular context as a block of text. The size of the block can range
from a single field, as in a dialog box, to the whole document, as in a word processor.

29 CONFIDENTIAL 22 July 1>

Human Interface Guidelines

Regardless of its size or arrangement, the application sees each block as a one-dimensional
string of characters. Text is edited the same way regardless of where it appears.

Graphics are pictures, drawn either by the user or by the application. Graphics in a
document tend to consist (but do not have to consist) of discrete objects, each of which can
be selected individually.

Arrays are one- or two-dimensional arrangements of fields. One-dimensional arrays are
called lists, two-dimensional arrays are called tables or forms. Each field, in turn,
contains a collection of infOImation, usually text, but possibly graphics. A table can be
easily identified on the screen, because it consists of rows and columns of fields
(sometimes called cells) separated by horizontal and vertical lines. A form is something the
user fl1ls out, like a tax form or credit-card application. The fields in a form can be
arranged in any appropriate way; nevertheless, the application regards the fields as in a
definite linear order.

Each of these three ways of presenting information re:c.ins its integrity, regardless of the
context in which it appears. For example, a field in an array can contain text. When the
user is manipulating the field as a whole, the field is treated as part of the array. When
users want to change the contents of the field, they edit the field in the same way as they
would any other text.

This section discusses first the general methods of selecting and then the specific methods
that apply to text applications, graphics applications, and arrays. Figure 8 compares some
of the general methods.

CI icking on B
selects B

B C 0 E

~~~
Renge
selection of
A through C
selects A} B}
end C

r...···:·:·:·:·:··........·..........·.. ··.... ,·.......·~......·1 ~~.~ ~.~~

~ ! \SI \SI
1 !, ~

Discont inuous
selection (renge
selection of A)
B} end Cis extended
to include E)

Figure 8. Selection Methods

CONFIDENTIAL 22 July 1986 30



Human Inteiface Guidelines

Selection in General

This section covers the topic of selection without regard to the kind of data involved:
selection by clicking, range selection, extending a selection, and discontinuous selection.
In all cases, inverse video indicates what has been selected.

Selection by Clicking

The most straightforward method of selecting an object is by clicking on it once. Most
things that can be selected are selected this way. The result of double clicking depends on
the context: double clicking on an application icon selects it and opens it, a shortcut for
selecting then choosing open from the File menu.

Range Selection

The user selects a range of objects by dragging through them. Although the exact meaning
of the selection depends on the type of application, the procedure is always the same:

1. The user positions the pointer at one corner of the range and presses the mouse button.
This position is called the anchor point of the range.

2. Without releasing the button, the user moves the pointer in any direction. As the pointer
is moved, visual feedback indicates the objects that would be selected if the mouse
button were released. For text and arrays, the selected area is continually highlighted.
For graphics, a dotted rectangle expands or contracts to show the range that will be
selected. (If possible, the view should scroll to allow extending the selection beyond
one windowful.)

3. When the feedback shows the desired range, the user releases the mouse button. The
point at which the button is released is called the active end of the range.

Extending a Selection

A user can change the extent of an existing selection by holding down the Shift key and
clicking the mouse button (Shift-Click). Exactly what happens next depends on the
context.

In text or an array, the result of a Shift-click is always a range. The position where the
button is clicked becomes the new endpoint or anchor point of the range; the selection can
be extended in any direction. If the user shift-elicks within the current range, the new
range will be smaller than the old range.

Extended selections can be made across the panes of a split window. (See "Splitting
Windows.")

Making a Discontinuous Selection

In graphics applications, objects aren't usually considered to be in any particular sequence.
A selection is extended by adding objects to it, and the added objects do not have to be
adjacent to the objects already selected. The user can add either an individual object or a
range of objects to the selection by holding down the Shift key before making the additional

31 CONFIDL~TAL 22 July 1986



Human Interface Guidelines

selection (Shift-click). When this happens, the objects between the current selection and
the new object are not automatically included in the selection. This kind of selection is
called a discontinuous selection. If the user holds down the Shift key and selects one
or more objects th3;t are already highlighted, the objects are deselected.

In the case of graphics, all selections are discontinuous selections because graphic objects
are discrete. This is not the case with arrays and text, however. In these two kinds of
applications, an extended selection made by a Shift-click always includes everything
between the old selection and the new endpoint. To provide for discontinuous selection in
these applications, Apple-click is included in the human interface.
To make a discontinuous selection in a text or array application, the user selects the fIrst
piece in the usual way and holds down the Apple key before selecting the remaining pieces.
Each piece is selected in the same way as if it were the whole selection, but because the
Apple key is held down, the new pieces are added to the existing selection instead of
replacing it. If one of the pieces selected with Apple-click is already within an existing part
of the selection, then instead of being added to the selection it's removed from the
selection. Figure 9 shows a sequence in which several pieces are selected and deselected.

A 8 C D

Cells 82) 83) C2) end C3 1
ere se Iected 2

3
4
S

A 8 C D

The user ho Ids down the 1

Apple key end cl ieks in DS 2
3
4
S

A B C D

The user holds down the 1
Apple key end el leks in C3 2

3
4
S

Figure 9. Discontinuous Selection Within an Array

Not all applications support discontinuous selections, and those that do might restrict the
operations a user can perform on them. For example, a word processor might allow the

CONFIDENTIAL 22 July 1986 32



Human Interface Guidelines

user to choose a font after making a discontinuous selection, but wouldn't allow the user to
type replacement characters (which part of the selection would they replace?).

Selection By Data Type

This section covers the topic of selection according of the kind of data involved: text, .
graphics, and arrays.

Selections in Text

In most applications, the user is required at some point to edit text. The principle of
consistency (both within and between applications) requires that text be selected and edited
in a consistent way, regardless of where it appears.

A block of text is a string of characters. A text selection is a substring of this string, which
can have any length from zero characters to the whole block. Each of the text selection
methods selects a different kind of substring. Figure 10 shows different kinds of text
selections.

Insertion point Lifells just El bowl of Apples!

Range of characters Life is les!

Word

Range of words

o i scont inuous
selection

Figure 10. Text Selections

Life is just El [D] of Apples!

l!mIIIt!I] El bowI of App Ies!

Life is mil e bowl of mmII

The insertion point is a zero-length text selection. The user establishes the location of
the insertion point by clicking somewhere in the text. The insertion point then appears at
the nearest character boundary. If the user clicks anywhere to the right of the last character
on a line, the insertion point appears immediately after the last character. If the user clicks
to the left of the fIrst character on a line, the insertion point appears immediately before the
fIrst character (unless the document is filled with space characters).

The insertion point shows where text will be inserted when the user begins typing, or
where cut or copied data (the contents of the Clipboard) will be pasted. After each
character is typed, the insertion point is moved to the right of the insertion.

If, between the mouse-down and the mouse-up, the user drags (moves the pointer more
than about half the width of a character), the selection is a range selection rather than an
insertion point.

33 CONFIDENTIAL 22 /"ly 1986



Hwnan Interface Guidelines

The user selects a whole word by double clicking somewhere witllln that word. If the user
begins a double click sequence, but then drags the mouse between the mouse-down and the
mouse-up of the second click, the selection becomes a range of words rather than a single
word. As the pointer moves, the application highlights or unhighlights a whole word at a
time.

A word, or range of words, can also be selected in the same way as any other range;
whether this type of selection is treated as a range of characters or as a range of words
depends on the operation. For example, in MacWrite, a range of individual characters that
happens to coincide with a range of words is treated like characters for purposes of
extending a selection, but is treated like words for purposes of "intelligent cut and paste"
(described later in "Text Editing").

The following is the definition of a word in the United States and Canada. In other
countries, the definition differs to reflect local formats for numbers, dates, and currency. A
word is defmed as any continuous string that contains only the following characters:

• a letter (including letters with diacritical marks)

• a digit

• a nonbreaking space (Option-space or Apple-Space)

• a currency symbol ($, ¢, £, or ¥)

• a percent sign

• a comma between digits

• a period before a digit

• an apostrophe between letters or digits

• a hyphen, but not a minus sign (Option-hyphen) or a dash (Option-Shift-hyphen)

If the user double-clicks over any character not on the list above, that character is selected,
but it is not considered a word.

These are examples of words:

$123,456.78
shouldn't
3 1/2 (with a nonbreaking space)
.5%

These are examples of nonwords:

7/10/6
blue cheese (with a breaking space)
"Wow!" (The quotation niarks and exclamation point aren't part of the word.)

In some contexts-in a programming language, for example-it may be appropriate to
allow 'users to select both the left and right parenthesis in a pair, as well as all the characters
between them, by double clicking on either one of them. The same could be implemented
for both square and curly brackets. This would mean that the user could select the entire
expression

[x+y-(4*3)!\(n-l )]

CONFTT)ENTIAL 22 July 1986 34



Human Inteiface Guidelines

simply by double clicking on [ or ].

The user selects a range of text by dragging through the range. A range is either a range of
words or a range of individual characters, as described under "Selecting Words."

If the user extends the range, the way the range is extended depends on what kind of range
it is. If it's a range of individual characters, it can be extended one character at a time. If
it's a range of words (including a single word), it's extended only by whole words.

Selections in Graphics

There are several different ways to select graphic objects and to show selection feedback in
existing applications. This section uses the MacDraw paradigm, but other situations may
require other solutions.

A MacDraw document is a collection of individual graphic objects. To select one of these
objects, the user clicks once on the object, which is then bracketed with four "handles."
(The handles are used to stretch or shrink the object, and aren't diSCUSSed here.) Figure 11
shows some examples of selection in MacDraw.

.. ..
This is e block of
text in MecDrew.. ..

Figure 11. Graphics Selections in MacDraw

There are two ways to select more than one object. A range selection includes every object
completely contained within the dotted rectangle that encloses the range as the user drags
the mouse. A discontinuous selection includes only those objects explicitly selected.

Selections in Arrays and Tables

An array is a one- or two-dimensional arrangement of fields. The user can select one or
more fields, or part of the contents of a field.

To select a single field, the user clicks in the field (Figure 12). The user can also select a
field by moving into it with the Tab or Return key.

35 CC'IFIDENTIAL 22 July 1986



Hwnan Inteiface Guidelines

Juneau
Phoenh<

Cheyenne

Boise
Honolulu

capital

Denver

Helena

Salt Lake City
Olympia

Carson City
Sanh Fe
Salem

Sacramento

New Mexico

Alaska
Arizona

Utah
Washington

Idaho

Wyoming

Colorado
California

Nevada
Monhna

Oregon

state

t Hewei i field,tCI' k hr- IC ere o se ec

state capital
Alaska Juneau
Arizona Phoenix
California Sacramento
Colorado Denver
Hawaii

~
Honolulu

Idaho Boise
Montana Helena
Nevada Carson City
New Mexico Santa Fe
Oregon Salem
Utah Salt Lake City
Washington Olympia
Wyoming Cheyenne

Figure 12. Field Selection in an Array

To select part of the contents of a field, the user must first select the field. The user then
clicks again to select the desired part of the field. Because the contents of a field are either
text or graphics, this type of selection follows the rules outlined above.

A table can also support selection of rows and columns. The most convenient way for the
user to select a column is to click in the column header. To select more than one column,
the user drags through several column headers. The same applies to rows.

Figures 13, 14, and 15 show column, range, and discontinuous selections in arrays.

CONFIDENTIAL 22 July ]986 36



CI ick here
I

state
~

capital
Alaska Juneau
Arizona Phoenix
California Sacramento
Colorado Denver
Hawaii Honolulu
Idaho Boise
Montana Helena
Nevada Carson City
New Mexico Santa Fe
Oregon Salem
Utah Salt Lake City
'Washington Olympia
'Wyoming Cheyenne

Hwnan Inteiface Guidelines

to select a column

state capital
mm_'~J:-un:"'e-au----l

Phoenix
Sacramento
Denver
Honolulu
Boise
Helena
Carson City
Santa Fe
Salem
Salt Lake City
Olympia
Cheyenne

Figure 13. Column Selection in an Array

state capital
Alaska Juneau
Arizona Phoenix
California Sacramento
Colorado Denver
Hawaii Honolulu
Idaho Boise

~----------- ----------'Montana Helena I
INevada Carson City :
INew Mexico Santa Fe I

~r!2.0~ _____ Salem I

"""" -----------Utah Salt Lake City
'Washington Olympia
'Wyoming Cheyenne

state capital
Alaska Juneau
Arizona Phoenix
California Sacramento
Colorado Denver
Hawaii Honolulu
Idaho Boise

i_
Utah Salt Lake City
'Washington Olympia
'Wyoming Cheyenne

Drag through this area and release to make this selection.

Figure 14. Range Selection in an Array

37 CONFIDENTIAL 22 July 1986



Hwnan Interface Guidelines

Colorado
Hawaii
Idaho
Mon~ana

capital
JunE'au
PhoE'nix
SacramE'n~o

DE'nvE'r
Honolulu
BoisE'
HE'lE'na

NE'vada
NE'W ME'xico
OrE'gon
Utah

Washington
Wyoming

:=:·31f1t.·31 FE'
8.31l~m

Salt Lake' City
Olympia
ChE'yE'nnE'

(

Figure 15. Discontinuous Selection in an Array

The Tab key cycles through the fields in an order determined by the application. From each
field, the Tab key selects the "next" field. Typically, the sequence of fields is first from left
to right, and then from top to bottom. When the last field in a form is selected, pressing the
Tab key selects the first field in the form. If there's a good reason, an application may
guide the user through the fields in some order other than the order in which the fields
appear on the screen.

The Return key selects the first field in the next row. If the idea of rows doesn't make
sense in a particular context, then the Return key should have the same effect as the Tab
key.

Editing Text
In addition to the operations described in "The Edit Menu," there are ways to edit text
without using menu commands.

Inserting Text

To insert text, the user selects an insertion point by clicking where the text is to go, then
starts typing. As the user types, the application continually moves the insertion point to the
right, as each new character is added.

Applications with multiline text blocks should support word wraparound. That is, no
word should be broken between lines.

CONFIDENTIAL 22 July 1986 38



Human Inteiface Guidelines

Backspacing

When the user presses the Backspace key, one of two things happens:

o If the current selection is one or more characters, it's deleted.

o If the current selection is an insertion point, the character to the left of the insertion point
is deleted.

In either case, the insertion point replaces the deleted character (or characters) in the
document. The deleted characters don't go into the Clipboard, but the deletion can be
undone by immediately choosing Undo.

Replacing Text

If the user starts typing when the selection is one or more characters, the characters that are
typed replace the selection. The deleted characters don't go into the Clipboard, but the
replacement can be undone by immediately choosing Undo.

Intelligent Cut and Paste

"Intelligent" cut and paste is a set of editing features that takes into account the need for
spaces between words--even when users can select words by double clicking.

To understand why this feature is helpful, consider the following sequence of events in an
application without intelligent cut and paste:

1. A sentence in the user's document reads

Returns are only accepted if the merchandise is damaged.

The user wants to chage this to

Returns are accepted only if the merchandise is damaged.

2. The user selects the word only by double clicking. The letters are highlighted, but
neither of the adjacent spaces is highlighted.

3. The user chooses Cut, clicks just before the word if, and chooses Paste.

4. The sentence now reads

Returns are accepted onlyifthe merchandise is damaged.

To correct the sentence, the user has to remove the extra space between are and
accepted, and add one between only and if. At this point he or she may be wondering
why people bother with computers at all.

If an application supports intelligent cut and paste, foe rules are:

o If the user selects a word or a range of words, highlight the selection, but not any
adjacent spaces.

o When the user chooses Cut, if the character to the left of the selection is a space, discard
it. Otherwise, if the character to the right of the selection is a space, discard it.

o When the user chooses Paste, if the character to the left or right of the current selection is
part of a word, insert a space before pasting.

39 CONFIDENTIAL 22 July 1986



Hwnan Inteiface Guidelines

If the left or right end of a text selection is a word, follow these rules at that end, regardless
of whether there's a word at the other end.

This feature should be used only if the application supports the full defmition of a word (as
detailed in "Selecting Words"), rather than the defmition of a word as "anything between
two spaces." These rules apply to any selection that's one or more whole words, whether
it was chosen with a double click or as a range selection.

Example 1:

1. Select a word, Drink to me _ with thine eyes.

2, Choose Cut. Drink to mel with thine eyes.

3, Select an insertion point. Dri nk to me wi th ~hine eyes.

4, Choose Paste, Drink to me with only Ithine eyes.

Example 2:

1, Select a word.

2, Choose Cut.

3, Select an insertion point

4, Choose Paste,

How I lIIII brown cow

Howll brown cow

How~ brown cow

How now~ brown cow

Figure 16. Intelligent Cut and Paste

Note that the selected text is not necessarily the exact same range that will be cut and,
eventually, pasted, This apparent violation of the principle that that the user should see
exactly what is happening provides a welcome and useful function.

Editing Fields

If an application isn't primarily a text application, but does use text in fields (such as in a
dialog box), it may not be able to provide the full text-editing capabilities described so far.
It's important, however, that whatever editing capabilities the application provides under
these circumstances be upward-compatible with the full text-editing capabilities. The
following list ranks the capabilities that can be provided, in a continuum from the minimum
set to the most sophisticated features: .

• The user can select the whole field and type in a new value.

• The user can backspace.

• The user can select a substring of the field and replace it.

CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

• The user can select a word by double clicking.

• The user can choose Undo, Cut, Copy, Paste, and Clear, as described in "The Edit
Menu."

• Intelligent cut and paste is fully implemented.

An application should also perform appropriate edit checks. For example, if the only
legitimate value for a field is a string of digits, the application issues an alert message if the
user types any nondigits. For example, the alert message might intenupt the erring user to
remind that the lettersl and 0 can't be used in place of the numerals 1 and O. Alternatively,
the application could wait until the user is through typing before checking the validity of a
field's contents. In this case, the appropriate time to check the field is when the user clicks
anywhere other than within the field or presses the Return, Enter, or Tab key.

41 CONFIDENTIAL 22 July 1986



(



Chapter 3

Screen Elements

The Desktop
The primary metaphor in the desktop interface is the desktop itself, the screen element that
underlies all the rest. The desktop gives a sense of apparent stability. The desktop stays
the same, for example, while the contents change; the menu categories remain constant
within an application. Though the desktop has a default "pattern," the user can, through
the Control Panel, change it at any time.

The three basic subsystems of the desktop are menus, icons, and windows.



Hwnan Inteiface Guidelines

Menu Bar

'* File Edit Uiew Special

773K available

!ilillii!i!!!l!!
personnel

o
taxes

13K in disk

Data

o
chartsletters

11!!!!I!!I!I!I!!

4 items

. "'O:::~'" ..... :~~ ••,. ',' "';0;..-: .,' .;.:.:',-e,,: ....

personnel
13K in disk 773K availab le

(

3 items

o
1984

letters
13K in disk

o
1985

o
1986

2 items

o
A-L

o
M - Z

Window Desktop Icon Icon

Figure 17. Desktop, Menu Bar, Windows, and Icons

Menus
The menu structure consists of the menu bar (which displays the menu titles), the menus,
and each menu's menu items.

Once a user has selected the object, text, or whatever, that he wants to do something to, he
chooses an operation from a menu. The menu bar extends across the top of the screen and
displays the title of each available menu. A menu itself is not visible until the user selects it
be pressing its title. Figure 18 shows an example of a menu bar that extends across the top
of the Macintosh screen.

43 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

Figure 18. Menu Bar [Fig. 1 in Inside Mac's Menu Manager Chapter]

If the user moves the pointer to the Edit portion of the menu bar and presses the mouse
button, the Edit menu appears, as shown in Figure 19.

CONFIDENTIAL 22 July 1986 44



/

(

Human Interface Guidelines

Figure 19. Menu [Fig. 2 in 1M's Menu Manager Chapter]

Menu items should be either verbs or adjectives. Use verbs (or verb phrases) to show the
user what can be done-Copy, Find, and Show Page, for example. Use adjectives (or
adjective phrases) to let the user specify an attribute of a selected object-Chicago [font],
Underline, and Double Space, for example. Menu items usually apply to the current
selection, although some apply to the whole document or window.

When you're designing an application program, don't assume that everything has to be
done through menus. Menus are often the best method, but sometimes it's more
appropriate for an operation to take place as a result of direct user manipulation of a graphic
object on the screen, such as a control or icon. Alternatively, a single menu item can
execute complicated instructions if it brings up a dialog box for the user to fJlI in.

The Menu Bar

The menu bar contains a number of words and phrases that are the titles of the menus
associated with the current application. Each application has its own menu bar. The names
of the menus do not change, except when the user opens a desk accessory that then adds a
new menu to the menu bar.

Nothing but menu titles can appear in the menu bar. If all the operations in a given menu
are currently disabled (that is, the user can't choose them), the menu title should be dimmed
(drawn in gray) but should remain visible in the menu bar. The user must always be able

45 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

to pull down the menu and see the names of the operations even when none of them can, at
the moment, be chosen.

Choosing a Menu Item

To choose a menu item, the user positions the pointer in the menu bar and over the menu's
title, and presses the mouse button. The application highlights the title and displays the
menu.

While holding down the mouse button, the user drags the pointer through the menu. Each
line is highlighted in turn. When the user releases the mouse button, the operation that's
highlighted is chosen. As soon as the mouse button is released, the menu item blinks
briefly, the menu disappears, and the operation is executed. The menu title in the menu
bar remains highlighted until the operation is completed.

Nothing actually happens until the user chooses the operation. The user can look at any of
the menus without making a commitment to do anything. The user can also move the
pointer allover the screen (except back into the menu bar) without losing sight of the menu,
as long as the mouse button is pressed. Moving the pointer away from the menu, and then
releasing the button, is one way to close a menu without choosing an operation.

The most frequently used operations should be at the top of a menu. The least frequently
used (such as Quit) should be at the bottom.

Appearance of Menu Items

The itemss in a particular menu should be logically related to the title of the menu. Names
must be terse, preferably one word with the fIrst letter capitalized. If it' s necessary to use
more than one word (Save As or Page Setup, for example), the fIrst word should be
capitalized, as well as other important words in the name. In addition to the names, three
features of menus help the user understand what each item does: grouping, toggles, and
special visual features.

Grouping Operations in Menus

As mentioned earlier, menu items can be divided into two kinds: verbs (actions) and
adjectives (attributes). An attribute stays in effect until it's canceled, while an action ceases
to be relevant after it has been performed. A single menu can contain both actions and
attributes, but the actions should be grouped together and the attributes grouped together.
The two groups are separated by dotted lines.

Another reason to group operations is to break up a menu so it's easier to read. Operations
grouped for this reason are logically related, but independent. Operations that are actions
are usually grouped this way, such as Cut, Copy, Paste, and Clear in the Edit menu.

Attribute operations that are interdependent are grouped, either as mutually exclusive
groups or as accumulating groups.

In a mutually exclusive attribute group, only one item in the group is in effect at any
one time. The item that's in effect is preceded in the menu by a check mark. If the user
chooses a different item in the group, the check mark is moved to the new item. An

CONFIDENTIAL 22 July 1986 46



(
\

(

Hwnan Interface Guidelines

example is MacWrite's Font menu, where only one font at a time can be in effect for a
particular selection. Radio button controls, where pressing one button disables all the
others, are also mutually exclusive.

In an accumulating attribute group, any number of attributes can be in effect at the
same time. One of the items in the group cancels all the others. An example is MacWrite's
Style menu, where the user can choose any combination of Bold, Italic, Underline,
Outline, or Shadow-but Plain Text cancels all the others. Check-box controls, in which
all, none, or any other number of the boxes may be in effect at a time, are also examples of
accumulating attributes.

Another way to show the presence or absence of an attribute is by a toggled operation.
In this case, an attribute has two states, and a single menu item allows the user to toggle
between the states. You can show the user that an operation is toggled either with check
marks or by changing the wording.

MacWrite's View menu is a good example of check marks that indicate the state of a
toggled attribute. When View by Icon has been chosen, there is a check mark to the left of
"by Icon" and all other views in the menu are not checked.

Here's an example of changing the wording in a toggled menu item. When rulers are
showing in a program that uses rulers, one item in the Format menu is Hide Rulers. If the
user chooses this item, the rulers are hidden, and the name changes to Show Rulers. Use
this technique only when the wording of the items makes it obvious that they're opposite
sides of the same thing-Undo and Redo are another good example.

Special Visual Features

In addition to the way menu items are name and grouped, menus have other features that
provide added infonnation:

• An ellipsis (...) after a name means that after that item is chosen, more information will
still be needed before the operation can be carried out. Usually, the user must fl11 in a
dialog box and click an OK button or its equivalent. Don't use the ellipsis when the
dialog that will appear is merely a confirmation or warning (for example, "Save changes
before quitting?").

• Check marks indicate attributes that are currently in effect.

• The application dims an item when the user can't choose it. If the user moves the pointer
over a dimmed item, that item isn't highlighted.

• If an item has a keyboard equivalen (if it can be chosen from the keyboard as well as
from a menu), its name in the menu is followed by the Apple (or cloverleaf) symbol and
a character. To choose an item this way, the user presses the character key while
holding down the Apple (Command) key.

47 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

New 3€N
Open... 3€O

Close
Saue 3€S
Saue Rs •••
Reuert to Saued

Page Setup•••
Print ...

Current view
is by Icon

by Small I con
v"by Icon

by Name
by Date
by Size
by Kind

Quit 3€Q
Keyboard
equivalent

Four commands in th is menu
are fo IIowed by ell ipses because
each wi II require additional
informat ion from the user.

Undo

3€Q

Commands that
carr t be chosen

I: u t
[Of)1J

Pos1 (~

I: I~~or
Select RII 3€R

Keyboard
equivalents

Show Clipboard

Figure 20Visual Features of Menus

r:ONFIDENTIAL 22 July 1986



Human Interface Guidelines

Scrolling Menus

Dont't worry about menus getting too long to fit on the screen. A routine in ROM causes
menus to scroll when they get that long.

Reserved Apple Key Combinations

There are several menu items, particularly in the File and Edit menus, that commonly have
keyboard equivalents. Keyboard equivalents are provided for people who prefer to keep
their hands on the keyboard instead of using a pointing device to choose operations from
menus. For the sake of consistency, several of those keyboard equivalents should be used
only for the operations listed below and should never be used for any other purpose.

Keyboard equivalents for menu operations are case-independent. In other words, both
Apple-S and Apple-s mean Save. The keyboard equivalent for Help in the Apple menu is
shown as Apple-?, but it doesn't actually require that the Shift key be used. The keyboard
equivalents are shown in the menus as capital letters just for consistency and aesthetics.
Modifier-key combinations other than the ones listed here should also be case-independent.
Except for its usual function of providing uppercase characters, the Shift key should be
used as a modifier key only as a last resort.

Apple Menu

Apple-? Help

File Menu

Apple-N New

( Apple-O Open

Apple-S Save

Apple-Q Quit

Edit Menu

Apple-Z Undo

Apple-X Cut

Apple-C Copy

Apple-V Paste

Many desk accessories (which are accessible from all applications) use the Clipboard and
must be able to depend on the keyboard equivalents for Undo, Cut, Copy, and Paste.

The keyboard equivalent for Quit is important in case there's a mouse malfunction. The
user can still leave the application in an orderly way (with a dialog box that accepts the
Return key as a Yes response), saving any changes to documents that haven't already been
saved.

Note that the Edit menu's four reserved letter keys are in close proximity to each other and
to the Apple key, allowing easy one-hand operation.

The keyboard equivalents in the Style menu are less strictly reserved. Applications that
have a Style menu shouldn't use these keyboard equivalents for any other purpose, but
applications that have no Style menu can use them for any purpose. Remember that you

49 CONFIDENTIAL 22 July 1986



Plain text

Bold

Italic

Underline

Human Interface Guidelines

risk confusing users if a given key combination means different things in different
applications.

Style Menu

Apple-P

Apple-B

Apple-I

Apple-U

There is a keyboard operation that has no menu equivalent It is Escape, or Apple-period,
which can be used to stop the current operation.

Several other menu features are also supported:

• A menu item can be shown in Bold, Italic, Outline, Underline, or Shadow character
style. This should be done only in the style menu, to illustrate the text styles.

• A menu item can be preceded by a special character such as .y or •. Icons can also
appear in menus, but because of their size they require two lines.

• Applications can have special kinds of menus for special situations-for example,
MacDraw's Fill menu.

Figure 21. MacDraw's Fill Menu

Standard Menus
One of the most effective ways to make applications consistent with one another is to use
standard menus. The operations controlled by these menus occur so frequently that it saves
considerable time for users if they always match exactly. Do not make up your own menus
and then give tl?em the same names as standard menus.

CONFIDENTIAL 22 July 7986 50



(

Human Interface Guidelines

Three of these menus, the Apple, File, and Edit menus, appear in almost every application.
The Font, FontSize, and Style menus affect the appearance of text and appear only in
applications where they're relevant

The Apple Menu

Desk accessories are mini-applications that are always available, via the Apple menu, while
the Finder or any other application is in use. Not all systems automatically alphabetize the
list of installed desk accessories.

Rbout MocPoint...

Rlorm Cloclc
Colculotor
Control Ponel
Key Cops
Note Pod
Puzzle
Scropboolc

Figure 22. Apple Menu

Only those desk accessories installed in the current system fIle can be called from the Apple
menu. There are some desk accessories that are linked to a particular application-for
example, spelling checkers that appear in the Apple menu only when a word processing
application is active. The list of desk accessories is expanded or reduced according to
what's available. There can be more than one accessory on the desktop at one time, as
shown in Figure 23.

51 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

Thi ngs to do thi s week

see Smi th re sal es meet ing
bi rthday card to Dani e1
get insurance Quote
change oi 1

Figure 23. Some Desk Accessories

The Apple menu also contains the About... menu item. Choosing this item brings up a
dialog box with the name, version number, and copyright information for the current
application, as well as any other information the application developer wants to display.
The Help item is also commonly in the Apple menu. In some applications, the Help and
About... functions are combined in one menu item.

The File Menu

The File menu lets the user perform certain simple filing operations without leaving the
application and returning to the Finder. It also contains Print and Quit. All of these
operations are described below.

CONF TT)ENTIAL22 July 1986 52



(

Human Inteiface Guidelines

Close
Save 3€S
Save As •••
RelJert to SalJed

Page Setup...
Print ...

Ouit

Figure 24. Standard File Menu

New

This is used to open a new, untitled document for the current application. The user names
the document the first time it's saved. New is disabled when the maximum number of
documents allowed by the application is already open.

Open

This is used to open an existing document. To select which document, the user is
presented with a dialog box. This dialog box shows a list of all the documents, on the disk
whose name is displayed, that can be handled by the current application.

53 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

letter
March Figures n Open » disk name
Marketing

( Eject )
messages
New Totals ( Cancel [ Driue )
Old Totals

Figure 25. Open Dialog Box

In the case of Macintosh's ROM-based Hierarchical File System (HFS), the user also has
the opportunity to browse through various folders, or subdirectories. The user can scroll
this list forward and backward. The dialog box also gives the user the chance to look at
documents on another disk or to eject a disk.

Using Open, the user can open only a document that can be processed by the current
application. To open a document that can be processed only by some other application, the
user must ordinarily leave the application and return to the Finder.

When an application starts up by putting an empty untitled document on the screen, the
Open option can remain enabled (not dimmed) even if the application allows only one open
document at a time. In this case, selecting Open from the File menu simultaneously closes
the empty document (why save an empty document?) and opens another.

Close

This is used to close the active window, which may be a document window, a desk
accessory, or any other type of window. Clicking in a window's close box is the same as
choosing Close.

When the user chooses Close or Quit, and the active document has been changed since the
last save, the Close dialog box appears, asking Save changes before closing? A great deal
of work can be lost if a user mistakenly clicks No instead of Yes. To avoid confusion, all
applications should use the same standard close dialog box. This is especially important to
Switcher users, who often move from one application to another and become less aware of

CONFIDENTIAL 2 July 1986 54



I
I

Human Interface Guidelines
subtle differences between applications.

SBlJe changes before closing?

n Yes

[ No

II
) [ Cancel)

(
\

Figure 26. Standard Close Dialog Box

Yes and No, the two direct responses to the question, are placed together on the left side of
the box. Yes is the default button. Cancel, which cancels Close, is to the right, separate
from Yes and No.

The text of the question is generally Save changes before closing? but if the user sees this
message after choosing Quit, the text would instead be Save changes before quitting? If the
application supports multiple windows, the text is Save changes to [document name]
before closing? Regardless of the text of the question, the box should always look the
same and appear in the same place on the screen.

Save

This menu item lets the user write (to the appropriate disk me) the-active document,
including any changes made to the that document since the last time it was saved. The
document remains open. Users appreciate seeing, at this point, a message (or at least a
wristwatch pointer) telling them the document is indeed being saved.

If no changes have been made since the last save, the Save option should be dimmed. Save
becomes available as soon as any change has been made to the document-the user can
save changes as often as she likes. If Save isn't dimmed and the user chooses Save even
though no changes have been made, an application shouldn't simply ignore the Save
request-it should instead display a brief message noting that no save is being done, and
why.

If the user chooses Save for a new untitled document (one the user hasn't named yet), the
application presents the Save As dialog box (shown below). This dialog box allows the
user to name the document before the application continues with the save. The active
document remains active.

If there's not enough room on the disk to save the document, the application says so. The
application then suggests that the user can choose Save As instead, to save the document on
another disk.

55 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

Save As

This menu item saves a copy of the active document under a new name provided by the
user. The result is two documents, identical except for their names.

When the user opens a document, makes changes to it, and then chooses Save As, the
changes are not made to the original document. The changed version of the document is
saved under the new name. The active document is no longer the one the user opened, but
rather the new one with the new name. .

If no changes had been made to the original document when Save As was chosen, then
there are two identical documents having different names.

Revert to Saved

Revert to Saved discards all changes made to the active document since the last time it was
saved or opened. The document on disk is reopened. Before all this happens, an alert box
is used to confmn that this is what the user wants. (This follows the principles that users
be allowed to make informed decisions and change their minds.)

Reuert to the last uersion
saued ?

~~iiiiiiiiiiiiiiiOiiiiiiiiiiKiiiiiiiiiiiiiii~n [ cancel)

Figure 27. A Revert to Saved Dialog Box

Page Setup

Page Setup lets the user specify printing parameters such as the paper size and printing
orientation (different applications will provide different option as needed). These
parameters are saved with the document when the document is saved.

CONFIDENTIAL 22 July 1986 56



/

Human Interface Guidelines

=l=as=e=r=W=r=it=e=r================= t OK )
Paper:@USletterOA4letterReduceor lll!Ii]':~'107

0
[ ]

Ie Cancelo US legal 085 letter Enhuge: -

Orientation

~
Printer Effects:
181 Font SUbstitution?
181 Smoothing?

/
"

Figure 28. A Page Setup Dialog Box

Print

This lets the user specify various parameters, such as print quality and number of copies,
and then prints the document. The parameters apply only to the current printing operation
and are not saved with the document.

=I=m=a=g=e=w:::::::::::::::ri::;:::::t::;:::::e==r==============;::;:::::::;::::::;:::::::;::::~::=::;:~~t OK n
COPies:/_' Pages: @ All 0 From:DTo:D (cancel)

Couer Page: @ No 0 First Page 0 last Page ( Help J

Paper Source: @ Paper Cassette 0 Manual Feed

Figure 29. A Print Dialog Box

Quit

This menu item lets the user leave the application and return to the Finder. If any open
documents have been changed since the last time they were saved, the application presents
the same alert box as for Close, once for each open document. If more than one document
is open, applications should display, in the alert box, the name of each open document.

The Edit Menu

There are two important principles behind the Edit menu:

• Anything the user can do, the user can also undo.

• Data can easily be moved from one part of a document to another part, from one
document to another, and even between documents that are created by different

57 CONFIDENTIAL 22 July jO"6



Human Inteiface Guidelines

applications or desk accessories. A system fIle called the Clipboard (a holding area for
text or graphics) makes this possible.

The Edit menu allows access to the operations that delete, move, and copy objects, as well
as Undo, Select All, and Show Clipboard. You can add other items to the Edit menu if
your application requires them-and if t!Iey're related to the standard items already there.

All applications should support Undo and cut and paste. This requires that the fIrst fIve
lines in the Edit menu must be exactly as shown in Figure 30: Undo followed by a dotted
line, then Cut, Copy, Paste, and Clear. This is important even if your application doesn't
itself make use of undo and cut and paste-those features are available to desk accessories
only through the Edit menu.

Undo (lest) Xl

Cut XH
Copy XC
Paste XU
Clear
Select All

Show Clipboard

Figure 30, Standard Edit Menu

The Clipboard

The Clipboard holds whatever is cut or copied from a document. Its contents stay intact
when the user changes documents, opens a desk accessory, or leaves the application. An
application can show the contents of the Clipboard in a window and can choose whether to
have the Clipboard window open or closed when the application starts up.

The Clipboard window looks like a document window. The user can see its contents but
cannot edit them. In most other respects, the Clipboard window behaves just like any other
window.

Every time the user performs a Copy on the current selection, a copy of the selection
replaces the previous contents of the Clipboard. The previous contents of the Clipboard
remain a'/ailable in case the user chooses Undo.

Althought it appears to the user that there's only one Clipboard, each application can create
its own. It is available to all applications that support Cut, Copy, and Paste. The user can
see the Clipboard window by choosing Show Clipboard from the Edit menu. If the
window is already showing, it's hidden by clicking the close box or choosing Hide
Clipboard in the Edit menu. (Show Clipboard and Hide Clipboard are a single toggled
item.)

CONFIDENTIAL 22 July 1986 58



/

Human Interface Guidelines

Because the content of the Clipboard doesn't change when the user moves from one
application to another, or when the user opens a desk accessory, the Clipboard is used for
transferring data among compatible applications and desk accessories.

If the Clipboard me is moved from one disk to another, the contents move with it,
replacing any existing Clipboard file on the target disk.

Undo

The Undo menu item reverses the effect of the previous operation. Not all operations can
be undone. The application determines which operations can be undone. The general rule
is that operations that change the contents of the document can be undone, whereas
operations that don't change the contents of the document cannot be undone.

Most menu items (whether chosen from the menu or by a keyboard equivalent) can be
undone. A typing sequence (any sequence of characters typed from the keyboard or
numeric keypad, including Backspace, Return, and Tab, but not including keyboard
equivalents of menu items) can also be undone.

Operations that can't be undone include selecting, scrolling, and splitting the window or
changing a window's size or location. None of these operations interrupts a typing
sequence. For example, if the user types a few characters and then scrolls the document,
an Undo operation doesn't undo the scrolling but does undo the typing. Whenever the
location affected by the Undo operation isn't currently showing on the screen, the
application should scroll the document so the user can see the effect of the Undo.

The actual wording of the Undo line, as it appears in the Edit menu, is Undo Typing or
Undo Cut-whatever the last undoable operation was. If the last operation can't be
undone, the line reads simply Undo and is dimmed to indicate that it's disabled.

Cut 3€H
Copy 3€C
Paste 3€U
Clear
Select All

Show Clipboard

Figure 31. Undo in an Edit Menu

If the last operation was Undo, the menu item is Redo xxx, where xxx is the operation that
was undone. If this item is chosen, the Undo is undone.

59 CONFIDENTIAL 22 July 1986



Hwnan Interface Guidelines

Cut 3€H
Copy 3€C
Paste 3€U
Clear
Select All

Show Clipboard

Figure 32. Redo in an Edit Menu

The Apple-Z key combination is reserved as a keyboard substitute for UndolRedo in the
Edit menu and should be used for no other purpose.

Cut

The user chooses Cut either to delete the current selection or to move it. A move is
eventually completed by choosing Paste.

When the user chooses Cut, the application removes the current selection from the
document and puts it in the Clipboard, replacing the Clipboard's previous contents. The
place where the selection used to be becomes the new selection; the visual implications of
this vary among applications. For example, in text, the new selection is an insertion point;
in an array, it's an empty but highlighted cell. If the user chooses Paste immediately after
choosing Cut, the document is just as it was before the cut.

The Apple-X key combination is reserved as a keyboard substitute for the Cut operation in
the Edit menu and should be used for no other purpose.

Copy

Before the user can copy something, she must fIrst select it. Copy puts a duplicate of the
selection in the Clipboard, but the selection also remains in the document. The user can
then choose Paste to insert the Clipboard's contents somewhere else.

The Apple-C key combination is reserved as a keyboard substitute for Copy in the Edit
menu and should be used for no other purpose.

Paste

Paste is the last stage of a move or copy operation. It inserts the contents of the Clipboard
into the document, replacing the current selection. If there is no current selection, it's

".'

CONFIDENTIAL 22 July 1986 (f)



Human Interface Guidelines

inserted at the insertion point (or at the application's equivalent of an insertion point). The
user can choose Paste several times in a row to paste multiple copies. After a paste, the
new selection is the object that was pasted, except in text, where it's an insertion point
immediately after the pasted text The Clipboard remains unchanged.

The Apple-V key combination is reserved as a keyboard substitute for Paste in the Edit
menu and should be used for no other purpose.

Clear

When the user makes a selection and then either chooses Clear from the Edit menu or
presses the Backspace key or Clear key, the application deletes the highlighted selection.
Unlike Cut and Copy, the Clear operation does not put the selection in the Clipboard. The
Clipboard is unchanged and the new selection is the same as it would be after a Cut.

Select All

Select All selects every object in the document. In a word processing application, Select
All selects every character.

Show Clipboard

Show Clipboard is a toggled item. When the Clipboard isn't displayed, it is Show
Clipboard. If the user chooses Show Clipboard, the Clipboard window is displayed and
the wording in the menu changes to Hide Clipboard.

Font-Related Menus

Three standard menus affect the appearance of text. The Font menu lets the user determine
the font of a text selection or of the characters she's about to type. The FontSize menu lets
the user detennine the size, in points, of the characters. The Style menu lets the user
determine such aspects of the text's appearance as boldface, italic, and so on.

A font (also often called a typeface) is a set of typographical characters created with a
consistent design. All the characters in a font share such features as the thickness of
vertical and horizontal lines, the degree and position of curves, and the use of serifs. Serifs
are fine lines added to the main strokes of a letter. The text of this book is set in various
sizes and styles of a serif font. This sentence, on the other hand, is set in a sans serif font,
which has no serifs.) The characters in a font can appear in many different point sizes, but
all have the same general appearance, regardless of size. Because fonts can be either fixed­
width or proportional, an application can't make assumptions about exactly how many
characters will fit in a given area.

Font Menu

The Font menu lists only those fonts that are currently available. A check mark indicates
which font is currently in effect.

61 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

Athens
Chicago
Geneua
london
Monaco

......New Yorl<:
Uenice

Figure 33. A Font Menu with Some Common Fonts

FontSize Menu

Font sizes are measured in points. A point is a typographical unit of measure equivalent
to In2 inch. The FontSize menu lists the nine standard sizes. The font size currently in
effect is indicated with a check mark. (See Figure 34.) Not every font is available in all
sizes; the sizes that are available for the selected font are shown outlined in the FontSize
menu. A font can be scaled to the other sizes, but scaled fonts usually suffer in
appearance on the screen and when printed by some kinds of printers.

This sentence is in lO-point type. This sentence is in 12-point type. This sentence is in 14­
point type.

9 point
10

......fl~
14
18
24
36
48
72

Figure 34. FontSize Menu with Standard Font Sizes

If there's insufficient room in the menu bar for the word FontSize, it can be abbreviated to
Size. If there's insufficient room for both a Font menu and a Size menu, the sizes can be
put at the end of the Style menu.

CONFIDENTIAL 22 July 1986 62



(

Human Interface Guidelines

Style Menu

Text-oriented application programs, such as word processors, have a Style menu that is
almost a standard menu. See Figure 35.

The operations in the standard Style menu are Plain Text, Bold, Italic, Underline, Outline,
and Shadow. All except Plain Text are accumulating attributes. This means that the user
can choose all of them, none of them, or any combination of them. It is important that each
attribute can be individually toggled on and off. If a user has accumulated several attributes
(bold, italic, and underline for example), and wants to eliminate bold and italic (keeping
underline), he doesn't want to have to choose Plain (which turns off all three attributes)
then start over by choosing underline.

A attribute that's in effect for the current selection is preceded, in the Style menu, by a
check mark. The absence of the check mark indicates that the attribute is not in effect for
the current selection. Choosing Plain Text cancels all the other choices.

./Plain TeHt ~P

Bold ~B

I folic ~I

Underline ~U

mrnQOnm@
"UJ[leo(D[!]J

Figure 35. Standard Style Menu

Other menus use plain 12-point Chicago for their text, but the Style menu can be self­
documenting by using, for example, shadowed 12-point Chicago to list the shadowed
attribute. Apple key combinations can be used as keyboard shortcuts to the Style menu.

Icons
Icons are graphic representations of disks, applications, folders, documents, and the trash can.
The user can drag icons around on the desktop (if it can't be dragged, it's not an icon).

63 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

Disk icons

Folder icon

Application icons

Document icons

Trash leon

~c=J

CJ

~

[Q I
mID

Figure 36. Five Kinds of Icons

Icons can contribute greatly to the clarity and attractiveness of an application. They can provide
concrete representations of abstract concepts such as open, select, and save. The use of icons
instead of words also makes it much easier to translate programs into other languages. Wherever
an explanation or label is needed, consider using an icon in addition to (or instead of) text-but,
like everything else, don't overdo it!

Palettes
Some applications use palettes as a quick way for the user to change from one operation to another.
A palette is a collection of small symbols, usually enclosed in rectangles. A symbol can be an
icon, a pattern, a character, or drawing that stands for an operation. When the user has clicked on
one of the symbols (or in its rectangle), it is distinguished from the other symbols (by highlighting,
for example), and the previously highlighted symbol goes back to its normal state. Figure 37
shows two palettes from the MacPaint application.

CONFIDENTIAL 22 July 1986 64



Human Interface Guidelines

Pattern palette with
solid black selected

•

Drawing tool palette}
with paintbrush selected

.. , ,
; ;. . , ,
; ;

.:.:.:.:. A'" A ...

.:.:.:.:.... ""

~A
~ ;I'm

t
,g
DmB
DB
oe
c::?w

a«

Figure 37. Two Palettes .

Typically, the symbol that's selected detennines what operations the user can perform. Selecting a
palette symbol puts the user into a mode. Modes are generally discouraged (see "Modelessness")
but can be justified when changing from one mode to another is almost instantaneous and when the
user can always see at a glance which mode is in effect. Changing the shape of the pointer is one
way to indicate that a mode has been set. Like all modal features, palettes should be used only
when they're the most natural way to structure an application.

A palette can be either part of a window (as in MacDraw) or a separate window (as in MacPaint).
Each system has its disadvantages. If the palette is part of the window, then parts of the palette
may be concealed if the user makes the window smaller. On the other hand, if it's not part of the
window, then it takes up extra space on the desktop. If an application supports multiple

65 CCVFIDENTJAL 22 July 1986



Human Interface Guidelines

documents open at the same time, it might be better to put a separate palette in each window, so
that a different palette symbol can be in effect in each document.

Windows
There are several kinds of windows: Document windows, dialog windows, and alert
windows. Most of this section deals with document windows; dialogs and alerts are
discussed together at the end of this section. Because controls appear only in windows,
they are also discussed throughout this section.

Each kind of window is made up of several parts, some of which are optional. The
application determines the content of the window. This section is about a window's
structural components (title bar, size box, close box, zoom box, and scroll bars).

Document Windows

Document indows are the areas on the screen where applications can display the
information contained in a document. Because a document may contain more information
than the window can display at one time, the window provides a view of a portion of a
document. Document indows also provide a graphic representation of opening, closing,
and other operations performed on documents. Windows are usually, but not necessarily,
rectangles. Figure 38 shows a standard document window and its components.

Scroll bar

Close box
I

o

PL

Zoom Window Box
I

- Title .- E!J .} Title bar

Scroll arrow - ~

Sero II box--

I
.{}

Scroll bar

Figure 38. Standard Window

Opening and Closing Windows

.Windows come up onto the screen in different ways as appropriate to the purpose of the
window. The application controls at least the initial size and placement of its windows.

CONFIDENTIAL 22 jlllv 1986



"

(

Hwnan Interface Guidelines

A standard window has a close box. When the close box is clicked, the window goes
away, accompanied by a visual cue such as animation showing the window shrinking into
the folder or icon from which it was opened.

The application in control of the window determines what's done with the window visually
and logically when the close box is clicked. To the user's eye, a window, once closed, can
seem either to retreat into an icon or to simply disappear. In reality, the infonnation in the
window may be saved (this is the usual case) and will still be there when the window is
reopened, or the window is empty each time it's opened

When a document is closed, the user must have the choice whether to save any changes
made to the document since the last time it was saved.

If an application doesn't support closing a window with a close box, it shouldn't include a
close box on the window.

Multiple Windows

Some applications can keep several windows on the desktop at the same time. Each
window is in a different plane. Windows can be moved around on the desktop much as
pieces of paper can be moved around on a real desktop. Each window can overlap those
behind it and can be overlapped by those in front of it. Even when windows don't overlap,
they retain their front-to-back ordering.

Each application may deal with the meaning and creation of multiple windows in its own
way. Different windows can represent:
• separate documents being viewed or edited simultaneously
• related parts of a logical whole (such as the listing, execution, and debugging of a

program)
• different views of the same information (such as a spreadsheet and a graph that represent

the same numbers

The advantage of multiple windows is that the user can isolate unrelated blocks of
information. The disadvantage is that the desktop can become cluttered, especially if some
of the windows can't be moved. Some applications provide, in the menu bar, a Windows
menu. This menu allows the user to quickly choose a window even though it may be out
of sight under other windows.

Figure 37 illustrates multiple windows.

67 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

Jub Titles

§O 'h:tuunh

Charges
Inactive
windows

Figure 37. Multiple Windows

The Active Window

Of all the windows that are open on the desktop, the user can work in only one window at
a time. This window is called the active window. All other open windows are
inactive. Things can be happening to documents in inactive windows, but the user can
work only with the active window. For example, if the user chooses Close from the File
menu, only the active window is closed.

To make a window active, the user clicks anywhere in it. Making a window active has two
immediate consequences:

• The window changes its appearance. Its title bar is highlighted. The scroll bars, close
box, zoom window box, and size box appear.

• The window "moves" to the frontmost plane, so that parts that had been covered by other
windows become visible.

Clicking in an inactive window does nothing except activate it. To make a selection within
the window, the user must click again. When the user clicks in a window that has been
deactivated, the window should be reinstated just the way it was when it was deactivated,
with the scroll box in the same position and the same selection highlighted.

When a window becomes inactive, the visual changes that took pl.ace when it was activated
are reversed. The title bar becomes unhighlighted. The scroll bars, close box, zoom
window box, and size box disappear. Although the information within the window remains
visible (except where obscured by other windows), any selection i3 deselected. Figure 39
shows the vis~al difference between active and inactive windows.

CO\J"hIDENTIAL 22 July 1986



Hwnan Interface Guidelines

Moving a Window

Although each application has its own way to initially place windows on the screen, the
user can move an active window-to make more room on the desktop or to uncover a
window it's overlapping-simply by dragging it by its title bar. A dotted outline of the
window follows the pointer until the user releases the mouse button. At the release of the
button the full window is redrawn in its new location. Moving a window doesn't affect the
appearance of the document within the window; the document moves right along with the
window.

The act of moving an inactive window makes it active-unless the user holds down the
Apple key while moving the inactive window, in which case the window moves, in the
same plane, without becoming active.

The application should ensure that a window can never be moved completely off the
screen.

Changing the Size of a Window

If a window has a size box in its bottom right comer, where the scroll bars come together,
the user can change the size of the window--enlarging or reducing it to the desired size.

Dragging the size box attaches a dotted outline of the window to the pointer. The outline's
top left comer stays fixed, while the bottom right comer follows the pointer. When the
mouse button is released, the entire window is redrawn in the shape of the dotted outline.

If a window can be moved, but not resized, then the user ends up constantly moving
windows on and off the screen. If the user moves the window off the right or bottom edge
of the screen, the scroll bars are the first things to disappear. To scroll the window, the
user must move the window back onto the screen again. If, on the other hand, the window
can be resized, then the user can change its size instead of moving it off the screen, and still
be able to scroll.

Resizing a window doesn't change the position of the top left comer of the window over
the document or the appearance of the part of the view that's still showing; it changes only
how much of the view..is visible inside the window. One exception to this rule is a
command such as Reduce to Fit in MacDraw, which changes the scaling of the view to fit
the size of the window. If, after choosing this command, the user resizes the window, the
application changes the scaling of the view.

Applications determine the minimum and maximum window size, which schould depend
on the physical size of the display. If the tries to shrink the window below its minimum
size, the attempt is ignored.

Window Zooming

The more open documents on a desktop, the more difficult it is for the user to locate, select,
and resize the one to be worked on. Some Apple computers have a feature in ROM that
allows users-with a single mouse click in the window:s zoom window box-to drag
and size the active window to a size and location they select, and then to return the window
to full size with another click. If this feature is present, the zoom window box (shown in
Figure 40) is present at the right end of the window's title bar. Because window zooming

69 CONFIDENTIAL 22 July 1986



Hwnan Inteiface Guidelines

is not available on all Apple computers, application programs must check the ROM and, if
the feature is not present, bypass it. Note also that window zooming does not involve the
variable magnification you get with a zoom lens).

Application developers are encouraged to use the zoom window function on systems that
make it available. The application should neither modify the shape or interpretation of
clicking on the zoom window box nor build additional icons in the title bar.

File Edit Search Format Font Style

Document

Zoom- Window box

File Edit Search Format Font Style

Document

Zoom- Window box
being cl icked

Figure 40. Window in Standard State

CONFIDENTIAi' 22 July 1986 70



(

(

Hwnan Interface Guidelines

Figure 41. Window in User-Selected State

The application detennines the standard state of the window. This is generally the full
screen, or close to it, and should be the size and location best suited to working on the
document. As often as they want, users can specify the user-selected state of the
window, generally the size and location best suited to organizing the desktop so that
documents can be found and selected.

The application program supplies values for the size and location of the window's standard
state as well as the initial values for the size and location of the user-selected state. The
standard state should be the most useful size and location for normal operations within the
program-usually the full screen. If the application doesn't supply a standard state, the full
screen (minus a few border pixels) is assumed.

The user can't change the standard size and location, but the application can change it
within context. For example, a word processor might defme the standard size and location
as wide enough to display a document whose width is specified in the Page Setup dialog.
If the user invokes Page Setup to specify a wider or narrower document, the application
might change the values for the standard size and location to reflect that change.

Explicit dragging or resizing of the window is handled according to these guidelines,
regardless of the presence or absence of the zoom window feature. The effect of dragging
or resizing depends on the state of the window and the degree of movement. In the

71 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

Macintosh computer, the user must drag or resize a window at least seven pixels to cause a
change in the user-selected state.

Scroll Bars

Scroll bars are used to change which part of a document view is shown in a window. Only
the active window can be scrolled.

A scroll bar is a light gray rectangle having on each end an arrow in a square box. A
window can have either a vertical scroll bar or a horizontal scroll bar, or both. Vertical
scroll bars are on the right side of the associated window; horizontal scroll bars run along
the bottom of the window. Inside the scroll bar is a white rectangle called the scroll box.
The rest of the scroll bar is the gray area.

Sero II arrow - {f

Gray area -11111111

Sero II arrow - V

Figure 42. Vertical Scroll Bar

Scroll Bar

A scroll bar represents one dimension (either top to bottom or left to right) of the entire
document. The scroll box represents the relative location, in the whole document, of the
portion currently seen in the window. The insertion point is linked to the scroll box. If
the user "moves" the document by clicking either a scroll arrow or in the gray area, the
scroll box moves along with it. If the user drags the scroll box, the document "moves"
along with it. If the document is no larger than the window, the scroll bars are inactive (the
scrolling apparatus isn't shown in them). If the document window is inactive, the scroll
bars aren't shown at all. '

There are three ways to move the document under the window: by sequential scrolling, by
"paging" windowful by windowful through the document, and by dragging the scroll box.
To experience these fIrst hand, try them out in an application such as MacWrite.

CONFIDENTIAL 22 July 1986 72



(
I,

(

Human Interface Guidelines

Scrolling With the Scroll Arrows

Clicking or pressing one of the scroll arrows lets the user see more of the document in the
direction of the scroll arrow, so it moves the document in the opposite direction from the
arrow. For example, when the user clicks the top scroll arrow, the document moves
down, bringing the view closer to the top of the document The scroll box moves toward
the arrow being clicked.

Each click in a scroll arrow causes movement a distance of one unit in the chosen direction,
with the unit of distance being appropriate to the application: one line for a word
processor, one row or column for a spreadsheet, and so on. Within a document, units
should always be the same size, for smooth scrolling. Pressing the scroll arrow causes
continuous movement in its direction.

Scrolling by Windowful

Clicking the mouse anywhere in the gray area of the scroll bar advances the docQIllent by a
windowful. The scroll box, and the document view, move toward the place where the user
clicked. Clicking below the scroll box, for example, brings the user the next windowful
toward the bottom of the document. Pressing in the gray area causes the display of
consecutive windowfuls until the user releases the mouse button, or until the location of the
scroll box catches up to the location of the pointer. Each windowful is the height or width
of the window, minus one unit overlap (where a unit is the distance the view scrolls when
the scroll arrow is clicked once).

In both the above schemes, the user moves the document in increments until it's in the
desired position under the window. The user can also move the document directly to any
position by dragging the scroll box to the corresponding position in the scroll bar. To
move the scroll box, the user drags it along the scroll bar; an outline of the scroll box
follows the pointer. When the mouse button is released, the scroll box jumps to the
position last held by the outline, and the document jumps to the position corresponding to
the new position of the scroll box.

Scrolling by Dragging the Scroll Box

If the user starts dragging the scroll box, and then moves the pointer a certain distance
outside the scroll bar, the scroll box stops following the pointer and snaps back to its
original position. If the user then releases the mouse button, no scrolling occurs. But if
the user, still holding down the mouse button, moves the pointer back into the scroll bar,
the scroll box again begins to move up and down with the pointer.

If a document has a fixed size, and the user scrolls to the right or bottom edge of the
document, the application displays a light gray background between the edge of the
document and the window frame.

Some applications put the page number inside the scroll box so that the user can see the
page number change as the document scrolls.

73 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

Automatic Scrolling

There are three instances when the application, rather than the user, scrolls the document.
These instances involve some potentially sticky problems about how to position the
document within the window after scrolling.

• The first case is when the user moves the pointer out of the window while either selecting
by dragging or while moving a selection with the mouse or with arrow keys. The
window keeps up with the selection by scrolling automatically in the direction the pointer
has been moved. The rate of scrolling is the same as if the user were pressing on the
corresponding scroll arrow or arrows.

• The second case is when the userperforrns an operation on a selection that isn't currently
showing in the window. When this happens, it's usually because the user has scrolled
the document after making a selection. In this case, the application scrolls the window so
that the selection is showing before performing the operation.

• The third case is when the application performs an operation whose side effect is to make
a new selection or move the insertion point. An example is a search operation, after
which the object of the search is selected. If this object isn't showing in the window, the
application must scroll the document to show it. Another example: After a paste
operation, the insertion point is after the end of the thing that was pasted.

The second and third cases present the same problem: Where should the selection be
positioned within the window after scrolling? The primary rule is that the application
should avoid unnecessary scrolling. Users prefer to retain control over the positioning of a
document. The following guidelines should be helpful:

• If part of the new selection is already showing in the window, don't scroll at all. An
exception to this rule is when the part of the selection that isn't showing is more
important than the part that is showing.

• If scrolling in one orientation (either horizontal or vertical) is enough to reveal the
selection, don't scroll in both orientations.

• If the selection is smaller than the window, position the selection so that some of its
context is showing on each side. It's better to put the selection somewhere near the
middle of the window than right up against the corner.

• Even if the selection is too large to show in the window, it might be preferable to show
some context rather than to try to fit as much as possible of the selection in the window.

Splitting a Window

Sometimes users want to see (and work on) two separate parts of a document
simultaneously. They can do this by splitting the window into independently scrollable
panes.

Applications that support splitting a window into panes place split bars at the top of the
vertical scroll bar and to the left of the horizontal one. Pressing a split bar attaches it to the
pointer. Pragging the split bar positions it anywhere along the scroll bar. Releasing the
mouse button creates a new split bar at that location and splits the window there, and
divides the appropriate scroll bar into separate scroll bars for each pane. .

CONFIDENTIAL 22 July 1986 74



Human Interface Guidelines

(

/Q
Split bar ~.

I
(}

No spl it

I
Split bar

Horizontal spl it

(
\

u

Vertical spl it

II1I11

Both spl its

Figure 43. Types of Split Windows

After a split, the document looks the same, except for the split line lying across it. But
there are now separate scroll bars for each pane. The panes are still scrolled together in the
orientation of the split, but can be scrolled independently in the other orientation. For
example, if the split is vertical, then vertical scrolling (using the scroll bar along the right of
the window) is still synchronous; horizontal scrolling is controlled separately for each
pane, using the two scroll bars along the bottom of the window.

75 CONFIDENTIAL 22 July 1986



Human Interface Guidelines

The panes scro II
together in
the vertical
orientation

C-Ni"-)
---

C-N2-)---
C-N3-)---
C-N4-)---

C=M()

C=M2~)

C=M3~)

C=M~)

Bingo

C=B 1=J
C=B2=)

C=B3=)

C-B4-)---
, .

The panes scro II independent Iy
in the horizontal orientation

c-AT-J---

C=A2=J

C-A3-J---
C-A4-J---

Figure 44. Scrolling a Split Window

To remove a split (to return the window to a single pane), the user drags the split bar to
either end of the scroll bar.

Even though there can be multiple panes, there can still be only one selection (the
highlighted selection may appear in all of the panes, in none of the panes, or in any number
in between). If a change is made in one pane, the change is reflected in all panes where that
portion of the document is visible. If the application has to scroll automatically to show the
selection, the pane that should be scrolled is the last one the user clicked in. If the selection
is already showing in one of the panes, no automatic scrolling takes place.

Panels

If the application divides a document window more or less permanently into different areas,
each having a different content, these areas are called panels. Unlike panes, which show
different parts of the same document but are functionally identical, panels are functionally
different from each other but might show different interpretations of the same part of the
document. For example-one panel might show a graphic version of the document while
another panel shows a text version, or one panel might show a numerical representation of
some data while another shows a graph based on the same data.

Panels, like windows can have scroll bars and can be split into more than one pane. Whether
to use panels instead of separate windows is up to the application. Multiple panels in the same
window are more compact than separate windows, but they have to be opened, moved, and
closed as a unit.

CONFIDENTIAL 22 July 1986 76



(

Human Interface Guidelines

Controls, Dialogs, and Alerts
The "select-then-choose" paradigm is good enough whenever operations are simple and act
on only one object. For those times when a command requires more than one object or
needs additional infOImation before it can be executed, the Apple human interface provides
two additional features:

• Dialogs, to allow the user to provide the needed additional information before a
command is executed

• Alerts, to notify the user whenever an unusual situation occurs

Because both of these features lean heavily on controls, controls are described in this
section, even though controls are also used in other places.

Controls

Performing actions on a system in an indirect fashion reduces the user's sense of direct
manipulation. To give users the feeling that they're in control of their computers, many of
an application's features are implemented with controls: graphic objects that, when
manipulated with the mouse, cause instant action with visible or audible results. Controls
also can change settings to modify future actions.

There are several types of controls. Buttons, check boxes, radio buttons, and scroll bars
are all available from the Macintosh Toolbox. You can also design your own controls,
such as the thermometer and gauge shown in Figure 44.

(

nButton 1 »
( Button 2 )

[gI Check BOH 1

[gI Check BOH 2

D Check BOH 3

o Redio Button 1

@ Redio Button 2

o Redio Button 3

Figure 45. Controls

dials

77 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

Buttons

A button is a small object labeled with text. Clicking or pressing a button performs the
action described by the button's label. Label each button according to the result of pressing
it. If the question is Save Changes? then Save and Don't Save are more meaningful than
Yes and No. If one button in a group is the default button, it has a darker border than the
other(s).

Buttons usually perform instantaneous actions, such as completing operations defined by a
dialog box or acknowledging error messages. They can also perform continuous actions,
in which case the effect of pressing on the button (holding it down) would be the same as
the effect of clicking it repeatedly.

.
Two particular buttons, OK and Cancel, are especially important in dialogs and alerts.
They're discussed under "Dialogs" and "Alerts."

Check Boxes and Radio Buttons

Whereas buttons perform instantaneous or continuous actions, check boxes and radio
buttons let the user choose among alternative values for a parameter.

Check boxes act like toggle switches (comparable to the text attributes in the Style menu).
Check boxes are used to indicate the state of a parameter that must be either off or on. The
parameter is on if the box is checked; otherwise it's off. The check boxes appearing
together in a given context are independent of each other-any number of them can be off
or on.

Radio buttons typically occur in groups. They're called radio buttons because they act
like the buttons on a car radio. They're mutually exclusive-at any given time, exactly one
button in the group is on. Clicking one button in a group turns whichever button was on
before.

Both check boxes and radio buttons are accompanied by text that identifies what each
button >ioes.

Dials

A dial displays the value, magnitude, or position of something in the application or
system. Some dials also allow the user to alter that value. Dials are predominantly analog
devices, displaying their values graphically and allowing the user to change the value by
dragging an indicator. Dials may also have a digital display.

The most common example of a dial is the scroll bar. The indicator of the scroll bar is the
scroll box that represents the relative position of the window over the whole length of the
document. The user can drag the scroll box to change that position.

Dialogs

Commands in menus normally act on only one object. If a command needs more
information before it can be performed, it presents a dialog box to gather the additional

CONFIDENTIAL 22 July 1986 78



(

/
\

Human Inteiface Guidelines

infonnation from the user. The user can tell which commands bring up dialog boxes
because they're followed by an ellipsis (... ) in the menu.

A dialog box is a rectangle that may contain text, controls, and icons. There should be
some text in the box that indicates which command caused the dialog box to appear and
what the function of the box is.

The user sets controls and text fields in the dialog box to provide the needed infonnation.
When the application puts up the dialog box, it should set the controls to some default
setting and fill in the text fields with default values, if possible. One of the text fields (the
"first" field) should be highlighted, so that the user can change its value just by typing in
the new value. If all the text fields are blank, there should be an insertion point in the first
field.

Editing text fields in a dialog box should confonn to the guidelines detailed under "Text
Editing."

When the user is through editing an item,

• Pressing the Tab key accepts the changes made to the item and selects the next item in
sequence.

• Clicking in another item accepts the changes made to the previous item and selects the
newly clicked item.

Dialog boxes are either modal or modeless.

A modal dialog box is one that the user must explicitly dismiss before doing anything
else, such as making a selection outside the dialog box or choosing a command.

Print the document (OK n.
@ 8 1/2" H 11" paper
o 8 1/2" H 14" paper (Cancel)

181 stop printing after each page

Title: IAnnual Reportl I

Figure 46. A Modal Dialog Box

Because it restricts the user's freedom of action, this type of dialog box should be used
only sparingly. In particular, the user can't choose a menu item while a modal dialog box
is up and therefore can do only the simplest kinds of text editing. For these reasons, the
main use of a modal dialog box is when it's important for the user to complete an operation
before doing anything else.

A modal dialog box usually has at least two buttons: OK and Cancel. OK dismisses the
dialog box and perfonns the original command according to the infonnation provided; it
can be given a more descriptive name than "OK." Cancel dismisses the dialog box and
cancels the original command. It should always be called "Cancel."

79 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

A dialog box can have other kinds of buttons as well. These mayor may not dismiss· the
dialog box. The default button (the safest or most likely choice in the current situation)
is boldly outlined to call attention to it. The default button is the one that takes effect if the
user presses Return or Enter on the keyboard instead of one of the screen buttons.
Pressing the Return or Enter key has the same effect as clicking the default button. If
there's no default button, Return and Enter have no effect.

A special type of modal dialog box is one with no buttons. This type of box just informs
the user of a situation without eliciting any response. It usually describe the progress of an
ongoing operation. Because it has no buttons, the user has no way to dismiss it.
Therefore, the application must display it long enough for the user to read it before taking it
down.

A modeless dialog box allows the user to perform other operations without dismissing the
dialog box.

§O Change

Find teHt: Guide Lines ( Change All )

(Change NeHt)

Change to: guidelinesl

Figure 47. A Modeless Dialog Box

A modeless dialog box is dismissed by clicking in the close box or by choosing Close.
The dialog box is also dismissed implicitly when the user chooses Quit. It's usually a good
idea for the applicatior to remember the contents of the dialog box after it's dismissed, so
that, when it's opened again, it can be restored exactly as it was.

Controls work the same way in modeless dialog boxes as in modal dialog boxes, except
that buttons never dismiss the dialog box. In this context, the OK button means "go ahead
and perform the operation, but leave the dialog box up," whereas the Cancel button usually
terminates an ongoing operation.

A modeless dialog box can also have text fields. Because the user can choose menu
commands, the full range of editing capabilities can be made available.

Alerts

Every user of every application is liable to do something that the application won't
understand or can't cope with in a normal manner. Alerts give applications a way to
respond to errors not only in a consistent manner, but in stages according to the severity of
the error, the user's level of expertise, and the particular history of the error. The two
kinds of alerts are beeps and alert boxes.

CONFJDENTIAL 22 July 1986

I

./



(

Human Interface Guidelines
Beeps are used for errors that are both minor and immediately obvious. For example, if the
user tries to backspace past the left boundary of a text field, the application could beep
instead of displaying an alert box.

An alert box looks like a modal dialog box, except that it's somewhat narrower and appears
lower on the screen. An alert box is primarily a one-way communication from the system
to the user. The only way the user can respond is by clicking buttons or by pressing Enter
or Return. Alert boxes, therefore, might contain dials and buttons but usually not text
fields, radio buttons, or check boxes.

[Don't [nne]

( [rose)

CAUTION

Are you sure
you want to erase all
changes to your document?

/

F:gure 48. A Typical Alert Box

There are three types of alert boxes:

• Note. A minor mistake that wouldn't have any disastrous consequences if left as is.

• Caution. An operation that mayor may not have undesirable results if it's allowed to
continue. The user is given the choice whether or not to continue.

• Stop. A serious problem or other situation that requires remedial action by the user.

An application can defme different responses for each of several stages of an alert, so that if
the user persists in the same mistake, the application can issue increasingly helpful (or
sterner) messages. A typical sequence is for the first two occurrences of the mistake to
result in a beep, and for subsequent occurrences to result in an alert box. This type of
sequence is especially appropriate when the mistake is one that has a high probability of
being accidental (for example, when the user chooses Cut when there's no text selection).

How the buttons in an alert box are labeled depends on the nature of the box. If the box
presents the user with a situation in which no alternative actions are available, the box has a
single button that's labeled OK. Clicking this button means "I've read the alert." If the
user is given alternatives, then typically the alert is phrased as a question that can be
answered "yes" or "no." In this case, buttons labeled Yes and No are appropriate,
although variations such as Save and Don't Save are also acceptable. OK and Cancel can
be used, as long as their meanings aren't ambiguous.

The default button is boldly outlined and takes effect if the user presses Return or Enter.

Use icons whenever possible. Graphics can better describe some error situations than
words, and familiar icons help users better distinguish between alternatives. Icons should
contain no words, and they should contain no symbols unique to a particular culture.

Generally, it's better to be polite than abrupt, even if it means lengthening the message.
The role of the alert box is to be helpful and make constructive suggestions, not to give
orders. But its focus is to help the user solve the problem, not to give an academic (no

81 CONP'DENTIAL 22 July 1986



Human Interface Guidelines

matter how interesting) description of the problem itself. It's important to phrase messages
in alert boxes so that users aren't left guessing the real meaning. Avoid computer jargon.

Make alert messages self-explanatory. The user should never have to refer to a book or
reference card to fmd out what an alert message means. Test your alert messages to be sure
they tell the user exactly what needs to be done.

The best way to make an alert message understandable is to think carefully through the
error condition itself. Can the application handle this without an error? Is the error specific
enough so that the user can fix the situation? What are the recommended solutions? Can
the exact item causing the error be displayed in the alert message?

i'
(

CONFIDENTIAL 22 Julv 1986 82



( Appendix A

Localization

General Guidelines

Guidelines

/

Compared to writing the actual code, localization can be easy and painless. If you pay attention
early on to the details of localization, you'll ensure that international markets are available for your
product in the future. You'll also allow English-speaking foreign users to buy the English version
of your software and still be able to use it with their native languages. To create fully easily
localized software, you must follow certain guidelines for the use of text, fonts, sorting and
date/time display.

(

Here are some tips to make your software more useful in cultures other than your own.

• Make quoted strings that will have to be translated easy to fmd. No text the user sees should be
in the program code itself. Storing all these words in resources will make translation easier.

• If your program relies on properties of the ASCII code table or uses data compression codes that
assume a certain number of letters in the alphabet, remember that not all alphabets have the same
numbers of characters. Gennan, for example, has thirty characters, not just twenty-six.

• Don't assume that all languages have the same rules for punctuation, word order, and
alphabetizing. In Spanish, questions both begin and end with a question mark. The roles of
commas and periods in numbers is sometimes the reverse of what you may be used to-in some
countries the number 3,546.98 is rendered 3.546,98. Use the Macintosh's international
resources.

• Don't let your program rely on strings having particular lengths. After translation, nearly all
strings will be either longer or shorter.

• Laws and customs vary. The elements of addresses don't always appear in the same order. In
some countries, the postal zone code precedes the name of the city, 'in other countries it's the
reverse. In some countries, postal zone codes contain letters as well as numbers. The rules for
amortizing mortgages and calculating interest rates vary from country to country---even between
Canada and the United States.

• Keyboards vary from country to country. Some characters appear on some keyboards and not
on others. Keystrokes that are easily perfonned with one hand in your own country may require
two hands in another. In France and Italy, for example, typing numerals requires pressing the
Shift key.

• Units of measure and standard fonnats for time and date differ from country to country. For
example, "characters per inch" is meaningless in the metric world-that is, almost everywhere.
In some countries, the 24-hour clock prevails. Such culture-dependent infonnation can be read



Human Interface Guidelines

from resources so that the application automatically works correctly in countries where those
resources have been properly set up. Always use the Macintosh's international resources instead
of coding such information directly into your program.

• Mnemonic shortcuts that are valid in one language may not be in others. Make sure all such
shortcuts are also in resources.

Macintosh Gtti-fte.Hnes Loca..C\ 2.a.J-[jY\,

This section is specific to the Macintosh family of computers. For full details, see Inside
Macintosh.

The Macintosh Resource Manager allows the separation of code and data. Data (in the form of
resources) can be edited with a number of tools such as REdit and ResEdit. Changing the
appropriate resources lets you change the appearance of an application (dialog boxes, messages,
menus, etc.) without re-building the application code.

Text

For legibility, some non-Roman characters need higher resolution than Roman characters. On the
Japanese Macintosh Plus, for example, this requires the system font to be larger than normal: it
must allow for 16-by-16 pixel characters. The Macintosh Plus' ROM sets the system font size
and family according to new low-memory globals. For example, it is possible to specify text in
dialogs and menu bars to be 14-point New York. Applications should not change the system font
or font size: this should be left to the user or the system. Applications can use SysFontSize to get
the default font size to use for their text.

Line Spacing

¥ost ;Macintosh fonts have blank space above all the letters, to allow for diacritical marks as with
A or N. If text is drawn using a standard font immediately below a dark line, for example, it will
appear to be separated from the line by at least one row of blank pixels (for all but a few
exceptional characters). Pixels in some non-Roman fonts, on the other hand, can extend to the top
of the character, and appear to merge with the preceding line. To avoid character display overlap,
applications should leave blank space around text (as in dialog editText items) or add leading
before the fIrst line of text and after the last line of text, as well as between lines of text.

Font Selection

The choice of script (English, Kanji, Arabic, etc.) depends on the fonts chosen by the user. If an
application does not allow the user to change fonts, or allows the user only to select a global font
for the whole document, then the user is restricted in the choice/m;.x of fonts.

Upper- and Lowercase

If text must be either upper or lower-cased, the application should call the IUTransliterate routine
(in the Script Interface System Package) to perform the operation. The UprString routine in the
Macintosh Rom is designed to be used by the File system and as such does not handle diacritical
marks or non-Roman scripts correctly.

r/17\lFIDENTJAL 22 July 1986



/
I.

(

\

Human Inteiface Guidelines

Menus

Menu Bar Height

The menu manager uses the system font and the system font size in setting up the height of the
menu bar, 'and of the items in menus. Because the system font size can vary, the height -of the
menu bar can also vary. When determining window placement on the screen, do not assume that
the menu bar height is 20. Applications should use the low memory variable MBarHeight (instead
of 20) as the height of the menu bar.

Menu Items

If a menu contains too many items to display at once, the menu scrolls to reveal the hidden items.
The Macintosh Plus ROM provides for scrolling of menus that are too long, but long menus
complicate the user interface. No more than 16 items should appear in a single menu.

Menu Titles

Applications should avoid using too many .lnenus: translation into other languages may widen each
of the menu titles, forcing some far to the right (possibly conflicting with the Switcher) or even off
the screen.

The International Utilities Package

The International Utilities Package (Pack6) provides routines for dealing with sorting, currency,
measurement systems, date and time formatting. It is important that the routines in this package are
used, as opposed to the System Utility routines contained in the Maciritosh ROM, because the
ROM routines are not as accurate and can't be localized for different countries (because they are
used by the File System).

The Script Interface System Package

The SIS package (pack8) contains'routines that allow an application to function correctly with non­
Roman scripts (Japanese and Arabic, for example). It also contains useful utility routines for text
processing and parsing.

Dialogs & Alerts

Give text room to grow during localization. For example, don't create a screen-sized dialog box
that is completely fJlled with text. Some languages require more characters than English does, to
convey equivalent messages.

When creating parameterized text, be sure the localizer will be able to rearrange the sentence as
needed. For example, if an alert box sentence is to say "There was a problem doing AD to the 1\ 1."
then the localizer will be able to correctly order the noun and prepositional phrase for different
languages.

85 CONFIDENTIAL 22 July 1986



Human Inteiface Guidelines

Avoid hard-coding positions for drawing text or graphics. If possible, use a UserItem for
positioning or dynamic display or PIer to display static graphics.

Some Useful Routines

GetFontInfo
GetResource
IUMagString

Font Manager
Resource Manager
Int'l Util Package

Calculate ascent/descent/leading.
Load resource into memory.
Sorting strings

CONFIDEN~· 4L22 July 1986 86



(

(

Appendix B

Bibliography

Most of these entries were suggested by a member of the Human Interface Group. For this draft
only, that person's initials appear in SMALL CAPS at the end of each entry. Reviewers: please
make more suggestions, or add annotations to the entries already here.

Articles

• Licklider, J. c., et al. "The Computer as a Communication Device." International Science and
Technology, 76, 21-31. (KH)

• Schneiderman, B. "Direct Manipulation: a Step Beyond Programming Languages." IEEE
Computer, 16 (8), 57-69. (KH)

• Smith, D. c., et al. "Designing the Star User Interface." Byte, 7 (4),242-282. (KH)

• Tesler, Larry. "The Legacy of the Lisa." Macworld, September 1985, pp 17-22. How the
Lisa changed personal computing, by a member of the Lisa design team. (JH)

Books

• Apple Computer, Inc. Inside Macintosh. Reading, Massachusetts: Addison-Wesley, 1985,
four volumes. Chapters on memory management, assembly language, the Resource Manager,
QuickDraw, the Font Manager, the Toolbox Event Manager, the Window Manager, the Control
Manager, and so on.

• Berryman, Gregg. Notes on Graphic Design and Visual Communication. Los Altos,
California: William Kaufmann, 1984. Deals with logos, colors, many other topics. (KK)

• Bertin, Jaques. Semiology ojGraphics. Madison: University of Wisconsin Press, 1983.
(AW)

• Card, S. K., et al. The Psychology of Human-Computer Interaction. Hillsdale, New Jersey:
Lawrence Erlbaum Associates, 1983. (KH)

• Diethelm, Walter. Signet Sign Symbol. ZUrich: ABC Verlag, 1976. (AW)

• Dreyfuss, Henry. Symbol Sourcebook, an Authoritative Guide to International Graphic
Symbols. New York: Van Nostrand Reinhold, 1984. Foreword by R. Buckminster Fuller.
Symbols are grouped by subject areas. Includes index. (KK)

• Engelbart, D. C. Augmenting Hwnan Intellect, a Conceptual Framework. Menlo Park,
California: Stanford Research Institute, 1962. (KH)



Human Inteiface Guidelines

• Favre, Jean-Paul and Andre November. Color and Communication. ZUrich: ABC Verlag,
1979. (AW)

• Frutiger, Adrian. Type Sign Symbol. ZUrich: ABC Verlag, 1980. (AW)

• Goldberg, A. Smalltalk-80, the Interactive Programming Environment. Reading,
Massachusetts: Addison-Wesley, 1984. (KH)

• Guedj, R. A., et aI. Methodology ofInteraction. Amsterdam: North-Holland, 1980. (KH)

• Heckel, Paul. The Elements ofFriendly Software Design. New York: Warner Books, 1984.

• Hunt, Morton. The Universe Within. New York: Simon and Schuster, 1982. (AW)

• Medley, Rudolf. Handbook ofPictorial Symbols. New York: Dover Publications, 1976.
(AW)

• Norman, Donald A. and Stephen W. Draper, eds. User Centered System Design. Hillsdale,
New Jersey: Lawrence Erlbaum Associates, 1986. Compilation of articles by nineteen authors.
(KH)

• Simpson, Henry. Programming the Macintosh User Inteiface. New York: McGraw-Hill,
1986. (JH)

• Whitney, Patrick and Cheryl Kent, eds. Design in the Information Environment. New York:
Knopf, 1985. (AW)

Periodicals

• Ergonomics. (KH)

• International Journal ofMan-Machine Studies. (KH)

• Proceedings of Human Factors Society. (AW)

• SIG-CHI Bulletin. The joumaI of ACM's SIG-CID (the Association for Computing
Machinery's Special Interest Group on Computer and Human Interaction). Once a year, the
Bulletin is devoted to the proceedings of SIG-CID's annuaI meeting. (JH)

-&- CONFIDENTIAL: 22 Jul\'1986
'68



(

(
\

GUIDELINES FOR LOCALIZABLE SOFI'WARE

Alexis Gerard, Apple International, May 1986.

1) Graphics Character Set:
When defining the character set, characters used in International
countries should be included.
a) I am attaching for your reference a table showing the additional
characters which are substituted in the ASCII table for localized
versions of the Apple II.
b) In addition, there are a number of characters which were not included
in the All ASCII table due to space limitations. They are:
i, i, i, 6, a, a, T, (and their caps versions), and a, r, 6, u.

2) Diacritical.:
A number of accented characters are customarily generated
diacritically, i.e. a ~dead key" stroke produces the accent, then the
character'is added. These are:
i, i, i, 6, a, i, a, T, a, and the caps versions of these, and a, a, La, a, a, r, 6,
u.

3) Conventions:
a) Date format: Users should be able to:

enter dd mm yy or mm dd yy, or yy mm dd, and to use either a
numeric or alpha format for the month,

- Use either a space, a slash (I) a dot (.) or a dash (-).'as separators.
b) Time format: Users should be able to select between 12 and 24 hour
clocks.
c) Unit of measure: Users should be able to specify print options using
either inches or centimeters.

4) Programming practices:
The following are a summary of the practices which should be observed
to make code easily localizable:

• Text strings should be kept in separate source files.

• If custom routines are used instead of the ones in ROM , to
perform screen 110, they should be isolated in a self-contained
module.





I

"

• Sorting routines should also be kept in separate modules ( they
probably do not work in a foreign language).

• Any graphic symbol should be approved by Apple's Human
Interface Group.

s Strings should not be concatenated to build longer messages or
cut to form a singular form or change the meaning of a word.

• Data compression should not be used: the algorythm would probably
not work with the extended character set of a foreign language.

• Documentation should be provided outlining the structure of each
program so that a translator will be able to understand what each
source code file does. If necessary, include special notes just for
the translator.

• A build procedure should be provided of sufficient detail to allow
a translator with minimal technical knowledge to create a running
version· of the program without intervention from the author.

• Commands, help screen, key strokes and any other table which might
contain text, should be kept completely separate from the code and
accessed only by symbolic addresses.




	v1_06_01
	v1_06_02
	v1_06_03
	v1_06_04
	v1_06_05
	v1_06_06

