Why Paper Jams Persist

This feature by Joshua Rothman for The New Yorker is custom-made for the Daring Fireball audience:

Unsurprisingly, the engineers who specialize in paper jams see them differently. Engineers tend to work in narrow subspecialties, but solving a jam requires knowledge of physics, chemistry, mechanical engineering, computer programming, and interface design. “It’s the ultimate challenge,” Ruiz said.

“I wouldn’t characterize it as annoying,” Vicki Warner, who leads a team of printer engineers at Xerox, said of discovering a new kind of paper jam. “I would characterize it as almost exciting.” When she graduated from the Rochester Institute of Technology, in 2006, her friends took jobs in trendy fields, such as automotive design. During her interview at Xerox, however, another engineer showed her the inside of a printing press. All Xerox printers look basically the same: a million-dollar printing press is like an office copier, but twenty-four feet long and eight feet high. Warner watched as the heavy, pale-gray double doors swung open to reveal a steampunk wonderland of gears, wheels, conveyor belts, and circuit boards. As in an office copier, green plastic handles offer access to the “paper path” — the winding route, from “feeder” to “stacker,” along which sheets of paper are shocked and soaked, curled and decurled, vacuumed and superheated. “Printers are essentially paper torture chambers,” Warner said, smiling behind her glasses. “I thought, This is the coolest thing I’ve ever seen.”

Saturday, 10 February 2018